31 |
PANCHROMATIC IMAGING OF A TRANSITIONAL DISK: THE DISK OF GM AUR IN OPTICAL AND FUV SCATTERED LIGHTHornbeck, J. B., Swearingen, J. R., Grady, C. A., Williger, G. M., Brown, A., Sitko, M. L., Wisniewski, J. P., Perrin, M. D., Lauroesch, J. T., Schneider, G., Apai, D., Brittain, S., Brown, J. M., Champney, E. H., Hamaguchi, K., Henning, Th., Lynch, D. K., Petre, R., Russell, R. W., Walter, F. M., Woodgate, B. 22 September 2016 (has links)
We have imaged GM Aurigae with the Hubble Space Telescope, detected its disk in scattered light at 1400 and 1650 angstrom, and compared these with observations at 3300 angstrom, 5550 angstrom, 1.1 mu m, and 1.6 mu m. The scattered light increases at shorter wavelengths. The radial surface brightness profile at 3300 angstrom shows no evidence of the 24 au radius cavity that has been previously observed in submillimeter observations. Comparison with dust grain opacity models indicates that. the surface of the entire disk is populated with submicron grains. We have compiled a. spectral energy distribution from 0.1 mu m to 1 mm. and used it to constrain a model of the star + disk system that includes the submillimeter cavity using the Monte Carlo radiative transfer code by Barbara Whitney. The best-fit model image indicates that the cavity should be detectable in the F330W bandpass if the cavity has been cleared of both large and small dust grains, but we do not detect it. The lack of an observed cavity can be explained by the presence of submicron grains interior to the submillimeter cavity wall. We suggest one explanation for this that. could be due to a planet of mass <9 M-J interior to 24 au. A unique cylindrical structure is detected in the far-UV data from the Advanced Camera for Surveys/ Solar Blind Channel. It is aligned along the system semiminor axis, but does not resemble an accretion-driven jet. The structure is limb. brightened and extends 190 +/- 35 au above the disk midplane. The inner radius of the limb. brightening is 40 +/- 10 au, just beyond the submillimeter cavity wall.
|
32 |
Exteme variables in star forming regionsContreras Peña, Carlos Eduardo January 2015 (has links)
The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to farinfrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with _K > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| < 1◦ yields 816 high amplitude variables, which include known variables of different classes such as high mass X-ray binaries, Novae and eclipsing binaries among others. Remarkably, 65% of the sample are found concentrated towards areas of star formation, similar to the results from GPS. In both surveys, sources in SFRs show spectral energy distributions (SEDs) that support classification as YSOs. This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow-up allows us to confirm the pre-main sequence nature of several GPS and VVV Objects. Most objects in both samples show spectroscopic signatures that can be attributed to YSOs undergoing high states of accretion, such as veiling of photospheric features and CO emission, or show FUor-like spectra. We also find a large fraction of objects with 2.12 μm H2 emission that can be explained as arising from shock-excited emission caused by molecular outflows. Whether these molecular outflows are related to outbursts events cannot be confirmed from our data. Adding the GPS and VVV spectroscopic results, we find that between 6 and 14 objects are new additions to the FUor class from their close resemblance to the near-infrared spectra of FUors, and at least 23 more objects are new additions to the eruptive variable class. For most of these we are unable to classify them into any of the original definitions for this variable class. In any case, we are adding up to 37 new stars to the eruptive variable class which would double the current number of known objects. We note that most objects are found to be deeply embedded optically invisible stars, thus increasing the number of objects belonging to this subclass by a much larger factor. In general, objects in our samples which are found to be likely eruptive variable stars show a mixture of characteristics that can be attributed to both of the optically-defined classes. This agrees well with the recent discoveries in the literature. Finally, we are able to derive a first rough estimate on the incidence of episodic accretion among class I YSOs in the star-forming complex G305. We find that _ 9% of such objects are in a state of high accretion. This number is in agreement with previous theoretical and observational estimates among class I YSOs.
|
33 |
The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028Dong, Ruobing, Marel, Nienke van der, Hashimoto, Jun, Chiang, Eugene, Akiyama, Eiji, Liu, Hauyu Baobab, Muto, Takayuki, Knapp, Gillian R., Tsukagoshi, Takashi, Brown, Joanna, Bruderer, Simon, Koyamatsu, Shin, Kudo, Tomoyuki, Ohashi, Nagayoshi, Rich, Evan, Satoshi, Mayama, Takami, Michihiro, Wisniewski, John, Yang, Yi, Zhu, Zhaohuan, Tamura, Motohide 21 February 2017 (has links)
We report ALMA Cycle 2 observations of 230 GHz (1.3 mm) dust continuum emission, and (CO)-C-12, (CO)-C-13, and (CO)-O-18 J = 2-1 line emission, from the Upper Scorpius transitional disk [PZ99] J160421.7-213028, with an angular resolution of similar to 0''.25 (35 au). Armed with these data and existing H-band scattered light observations, we measure the size and depth of the disk's central cavity, and the sharpness of its outer edge, in three components: sub-mu m-sized "small" dust traced by scattered light, millimeter-sized "big" dust traced by the millimeter continuum, and gas traced by line emission. Both dust populations feature a cavity of radius similar to 70 au that is depleted by factors of at least 1000 relative to the dust density just outside. The millimeter continuum data are well explained by a cavity with a sharp edge. Scattered light observations can be fitted with a cavity in small dust that has either a sharp edge at 60 au, or an edge that transitions smoothly over an annular width of 10 au near 60 au. In gas, the data are consistent with a cavity that is smaller, about 15 au in radius, and whose surface density at 15 au is 10(3 +/- 1) times smaller than the surface density at 70 au; the gas density grades smoothly between these two radii. The CO isotopologue observations rule out a sharp drop in gas surface density at 30 au or a double-drop model, as found by previous modeling. Future observations are needed to assess the nature of these gas and dust cavities (e.g., whether they are opened by multiple as-yet-unseen planets or photoevaporation).
|
34 |
What is the Mass of a Gap-opening Planet?Dong, Ruobing, Fung, Jeffrey 24 January 2017 (has links)
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity M-p(2)/alpha, where Mp is the mass of the gap-opening planet and a characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa. 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming a = 10(-3), the derived planet masses in all cases are roughly between 0.1 and 1M(J).
|
35 |
Identification en imagerie Doppler : liens avec la transformée de radon généraliséeMennessier, Catherine 17 October 1997 (has links) (PDF)
Le champ magnétique des étoiles joue un rôle essentiel dans leur évolution interne et dans l'interaction qu'elles entretiennent avec leur environnement. Il se manifeste, entre autre, par l'existence de structures inhomogènes à leur surface. Hélas à de rares exceptions la résolution des télescopes reste insuffisante pour les résoudre spatialement. Ceci oblige donc à se tourner vers des méthodes indirectes. Telle est le but de l'imagerie Doppler. Après un exposé détaillé du principe de l'imagerie Doppler et quelques rappels sur la tomographie - transformée de Radon classique - nous montrons que cette technique astrophysique peut être traduite en termes de transformée de Radon généralisée. Cette réécriture du problème inverse d'imagerie Doppler permet d'étudier l'identifiabilité. Nous en déduisons, en particulier, l'existence de fonctions radiales du noyau. Des codes numériques performants utilisés classiquement en tomographie sont ensuite adaptés à notre type de mesure. Ils permettront de mieux caractériser les fonctions du noyau déduites de l'étude précédente. Nous nous intéressons ensuite à la géométrie d'échantillonnage des mesures en imagerie Doppler. Pour cela, nous étendons les résultats de schémas d'échantillonnage de la transformée de Radon classique à la transformée de Radon généralisée invariante par rotation avec fonction poids polynomiales. Ce résultat peut être appliqué à deux cas singuliers en imagerie Doppler. Par ailleurs, nous présentons les enjeux astrophysiques de l'imagerie Doppler : dans un premier temps sont résumées diverses manifestations du champ magnétique dans l'activité des étoiles, en particulier des étoiles jeunes T Tauri ainsi que le rôle de ce champ dans certains modèles d'évolution. Dans un deuxième temps sont données diverses techniques permettant d'estimer l'activité magnétique, parmi lesquelles l'imagerie Doppler dont la spécificité est soulignée. Enfin, cette technique est appliquée sur des données réelles issues d'observations que nous avons menées à l'Observatoire de Haute Provence. Des structures en surface sont déduites et les résultats sont discutés.
|
36 |
TOYS : time-domain observations of young starsBozhinova, Inna January 2017 (has links)
Stars form inside clouds of molecular gas and dust. In the early stages of stellar evolution the remainders of the initial cloud form a circumstellar disk. For the next few million years the disk will slowly dissipate via accretion, outflows, photoevaporation and planet growth while the star makes its way onto the Main Sequence. This stage of a star's life is referred to as the T Tauri phase and is characterised by high-level spectrophotometric variability. This thesis aims to study and map out the environments of T Tauri stars down to the very low mass regime by the means of time-domain monitoring. Different physical processes in the system manifest themselves as variability on different time- scales as well as produce characteristic spectroscopic and photometric features at various wave- lengths. In order to study young stellar objects in depth, the observing campaigns presented in this work were designed to cover a large range of time-scales - minutes, hours, days and months. Combining all the data, this thesis establishes a baseline of over a decade for some objects. The observations also cover a wide range of wavelengths from the optical to the mid-infrared part of the spectrum. The star RW Aur experienced two long-lasting dimming events in 2010 and 2014. This thesis presents a large collection of spectral and photometric measurements carried out just before and during the 2014 event. Spectral accretion signatures indicate no change in the accretion activity of the system. Photometry indicates that parallel to the dimming in the optical the star becomes brighter in the mid-infrared. The observations in this work combined with literature data suggest that the origin of the 2014 event is most likely obscuration of the star by hot dust from the disk being lifted into the disk wind. Very low mass stars (< 0.4 M⊙) are the most common type of star in the Galaxy. In order to understand the early stages of stellar evolution we must study young very low mass stars. This work investigates the photometric and spectroscopic variability of seven brown dwarfs in star forming regions near σ Ori and ε Ori. All targets exhibit optical photometric variability between from 0.1 to over 1.0 magnitude that persists on a time-scale of at least one decade. Despite the photometric variability no change in the spectral type is measured. In the cases where the stars are accreting, modelling of the spectral changes suggest the accretion flow is more homogeneous and less funnelled compared to Sun-like T Tauri stars. The non-accreting variables are more plausibly explained by obscuration by circumstellar material, possibly a ring made out of multiple clouds of dust grains and pebbles with varying optical depths. The star-disk systems studied in this thesis have some broader implications for star and planet formation theory. The case-study of RW Aur has unambiguously demonstrated that the planet- forming environment is very dynamic and can change dramatically on short time-scales, which in turn would have implications for the diversity of planetary systems found in the Galaxy. The Orion stars have shown that the current theory for the T Tauri stage of stellar evolution is valid down to the very low mass regime. The seven dwarfs are a good example for the evolutionary path of circumstellar disks, showing the transition from gas-high, flared accretion disks (σ Ori) to dust-dominated, depleted, structured debris disks (ε Ori).
|
37 |
X-shooter study of accretion in Chamaeleon IManara, C. F., Testi, L., Herczeg, G. J., Pascucci, I., Alcalá, J. M., Natta, A., Antoniucci, S., Fedele, D., Mulders, G. D., Henning, T., Mohanty, S., Prusti, T., Rigliaco, E. 25 August 2017 (has links)
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M-star) similar to 0.1 M-circle dot for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 +/- 0.1 and 2.3 +/- 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than similar to 0.45 L-circle dot and for stellar masses lower than similar to 0.3 M-circle dot is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M-star similar to 0.3-0.4 M-circle dot. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are similar to 10(-10) M-circle dot/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk.
|
38 |
CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHYMawet, Dimitri, Choquet, Élodie, Absil, Olivier, Huby, Elsa, Bottom, Michael, Serabyn, Eugene, Femenia, Bruno, Lebreton, Jérémy, Matthews, Keith, Gonzalez, Carlos A. Gomez, Wertz, Olivier, Carlomagno, Brunella, Christiaens, Valentin, Defrère, Denis, Delacroix, Christian, Forsberg, Pontus, Habraken, Serge, Jolivet, Aissa, Karlsson, Mikael, Milli, Julien, Pinte, Christophe, Piron, Pierre, Reggiani, Maddalena, Surdej, Jean, Catalan, Ernesto Vargas 03 January 2017 (has links)
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L' band (3.8 mu m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of similar or equal to 23 au and up to similar or equal to 70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 mu m PAH emission reported earlier. We also see an outward progression in dust location from the L' band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L'-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
|
39 |
The 2014–2017 outburst of the young star ASASSN-13dbSicilia-Aguilar, A., Oprandi, A., Froebrich, D., Fang, M., Prieto, J. L., Stanek, K., Scholz, A., Kochanek, C. S., Henning, Th., Gredel, R., Holoien, T. W.- S., Rabus, M., Shappee, B. J., Billington, S. J., Campbell-White, J., Zegmott, T. J. 24 November 2017 (has links)
Context. Accretion outbursts are key elements in star formation. ASASSN-13db is a M5-type star with a protoplanetary disk, the lowest-mass star known to experience accretion outbursts. Since its discovery in 2013, it has experienced two outbursts, the second of which started in November 2014 and lasted until February 2017. Aims. We explore the photometric and spectroscopic behavior of ASASSN-13db during the 2014-2017 outburst. Methods. We use high- and low-resolution spectroscopy and time-resolved photometry from the ASAS-SN survey, the LCOGT and the Beacon Observatory to study the light curve of ASASSN-13db and the dynamical and physical properties of the accretion flow. Results. The 2014-2017 outburst lasted for nearly 800 days. A 4.15 d period in the light curve likely corresponds to rotational modulation of a star with hot spot(s). The spectra show multiple emission lines with variable inverse P-Cygni profiles and a highly variable blue-shifted absorption below the continuum. Line ratios from metallic emission lines (Fe I/Fe II, Ti I/Ti II) suggest temperatures of similar to 5800-6000 K in the accretion flow. Conclusions. Photometrically and spectroscopically, the 2014-2017 event displays an intermediate behavior between EXors and FUors. The accretion rate (<(M)over dot> = 1-3 x 10(-7) M-circle dot/yr), about two orders of magnitude higher than the accretion rate in quiescence, is not significantly different from the accretion rate observed in 2013. The absorption features in the spectra suggest that the system is viewed at a high angle and drives a powerful, non-axisymmetric wind, maybe related to magnetic reconnection. The properties of ASASSN-13db suggest that temperatures lower than those for solar-type stars are needed for modeling accretion in very-low-mass systems. Finally, the rotational modulation during the outburst reveals that accretion-related structures settle after the beginning of the outburst and can be relatively stable and long-lived. Our work also demonstrates the power of time-resolved photometry and spectroscopy to explore the properties of variable and outbursting stars.
|
40 |
The production of VLCPUFAs in plants / Die Produktion von VLCPUFAs in PflanzenAhmann, Katharina 24 January 2011 (has links)
No description available.
|
Page generated in 0.0373 seconds