Spelling suggestions: "subject:"tbb"" "subject:"tbab""
1 |
Participation de l'endocarde dans les malformations cardiaques du syndrome Holt-OramNadeau, Mathieu January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
TBX5 Mechanism of Action in Skeletal Muscle Cell Proliferation and DifferentiationSheikh-Hassani, Massomeh 11 August 2020 (has links)
Skeletal muscle development and function is governed by a conserved set of Transcription Factors (TFs) that regulate gene expression. The TF gene regulation is stimulus driven and cell-type and time point specific. TBX5 is an essential dosage sensitive regulator of heart and limb development. In the skeletal system, TBX5 is expressed in early stages in the lateral plate mesoderm and gives rise to the forelimb. TBX5 is also involved in proliferation and differentiation and survival pathways in both heart and limb development. Mutations in TBX5 gene lead to HOS which is characterized by various types of cardiac and musculoskeletal defects. TBX5 mechanism of action and its spatiotemporal function in skeletal muscle development has yet to be fully understood. TBX5 regulation is controlled through various factors such as alternative splicing, protein-protein interactions, Post-Translational Modifications (PTMs) and microRNAs. To date, many TBX5 interactors have been identified in cardiac cells however TBX5 protein interactors and target genes in skeletal muscle cells have not been studied. Understanding the protein interactome of TBX5 in skeletal muscle will enhance the current understanding of its mechanism of action. In this study we have characterized TBX5 with focus on its regulation, expression and biochemical properties in cardiac and skeletal muscle cells and moreover its mechanism of action specifically in skeletal muscle proliferation and differentiation. Chapter 1 discusses TBX5 regulation through alternative splicing leading to the existence of 5 distinct TBX5 isoforms with variable transcriptional activity, cardiac and limb expression pattern, biochemical properties and function. We show the pro-proliferation role of TBX5a in myoblasts while TBX5c shows to be pro-differentiation leading to the formation of myotubes in skeletal muscle C2C12 myoblasts. This opposing role of the two TBX5 isoforms lead us to studying TBX5 mechanism of action in proliferation and differentiation of skeletal muscle cells. In this study using a mass spectrometry-based approach we have identified novel TBX5 interacting partners in skeletal muscle cells for the first time by using stably overexpressed 3xFlag TBX5 via retroviral transduction in C2C12 cell line. Nuclear protein extracts were immunoprecipitated and sent for HPLC-ESI-MS/MS to identify potential protein partners of TBX5 in skeletal muscle cells. Moreover, the same stable cell line was used to identify TBX5 downstream target genes in these cell types by sending RNA extracts for microarray analysis. Amongst the 200 protein interactors identified, MYBBP1a and TBX5 interaction was confirmed and studied. The microarray analysis identified over 1200 differentially expressed genes and potential downstream targets of TBX5a from which Myostatin (Mstn) and Cyclin D2 (CcnD2) were both significantly upregulated and further confirmed and studied in relation to proliferation and differentiation in skeletal muscle cells. Chapter 2 focuses on the cooperative interaction between TBX5a and MYBBP1a inhibiting muscle specific gene promoter, Myogenin (MyoG). TBX5a and TBX5c seem to both interact with MYBBP1a but result in variable transcriptional activity of both MyoG and Mstn gene promoters. We show that TBX5 is upstream of Mstn, it binds to the promoter on specific TBE sites, and is able to upregulate Mstn promoter activation. In vivo, we show that MDX mice limb skeletal muscle tissues show elevated levels of TBX5, MYBBP1a and MSTN expression which suggest that the TBX5 pathway is associated with and indicative of the onset of proliferation and regeneration in MDX skeletal muscle tissue. Chapter 3 discusses the role of TBX5 in proliferation and regeneration of skeletal muscle cells by identifying that TBX5 binds to CcnD2 promoter and upregulates its activation which is a known cell cycle gene critical in cell proliferation and survival. Moreover, we identify GATA4 as a TBX5a cofactor in myoblast proliferation and show synergistic activation of Ccnd2 promoter by cooperative TBX5a and GATA4 action. We further show that Tbx5 heterozygote mice exhibit decreased levels of CCND2 and other proliferation markers, as well as decreased expression of PAX7 (marker of satellite cells) compared to WT skeletal muscle tissues. We also show that the heterozygous loss of Tbx5 impairs the process of regeneration in a cardiotoxin-induced injury model in mouse limb tissues. Tbx5 heterozygote mice exhibit less proliferation and impaired regeneration 4 days after injury, followed by decreased formation of regenerated fibers by 7 days post-injury compared to the wildtype mice skeletal muscle tissues; suggesting that TBX5 function is important in maintaining adult muscle regenerative capacity. Together, this study has characterized TBX5 isoforms and identified novel TBX5 protein partners and targets in the skeletal muscle cells and sheds light on TBX5 regulatory mechanism in proliferation and differentiation of skeletal muscle cells and its potential implications in HOS and other muscular diseases.
|
3 |
Mammalian atrioventricular junction anatomy, electrophysiology and ion channel remodelling in health and diseaseNikolaidou, Theodora January 2013 (has links)
The atrioventricular junction (AVJ) is a complex anatomical structure. It has an important role in maintaining synchronised atrioventricular conduction and protects from ventricular tachycardia, as well as bradycardia. Its embryological development and function is under tight transcription factor control. Heart failure is a chronic systemic condition, affecting one million people in the UK alone. Slowing of atrioventricular conduction in heart failure is associated with increased morbidity and mortality. The molecular and anatomical basis of abnormal atrioventricular conduction was studied in a rabbit model of heart failure due to aortic insufficiency and abdominal aortic constriction. The PR interval was significantly prolonged in heart failure animals. Using laser-assisted microdissection, the tiny tissues of the AVJ were collected for RT-PCR analysis. HCN1, Cav1.3, Cx40 and Cx43 transcripts were significantly downregulated by heart failure, with a compensatory increase in CLCN2, Nav1.1, Navβ1, SUR2A and PAK1. Immunolabelling for Cx43 showed reduction in protein level and longitudinal dissociation not only in the inferior nodal extension but also in the His bundle in heart failure animals. Anatomical studies of the AVJ have previously been limited by its small size and inaccessible location. Contrast-enhanced micro-CT scanning allowed non-destructive imaging of the AVJ anatomy. AVJ length and volume were increased in the rabbit model of heart failure, which is expected to contribute to atrioventricular conduction abnormalities. Micro-CT additionally resolved the anatomy of the canine AVJ and atria, including fibre orientation in the pulmonary vein sleeves and Bachmann’s bundle. The physiological effects of loss of T-box transcription factor 5 (Tbx5) in the AVJ were studied in a transgenic inducible Tbx5 knockout mouse model using optical mapping. Tbx5-deficient mice had a prolonged PR interval in vivo and a higher incidence of atrioventricular block and ventricular conduction abnormalities in Langendorff-perfused hearts.
|
4 |
Deficits in Cardiomyocyte Proliferation: Contributors to Congenital Heart DefectsChang, Sheng-Wei 05 September 2014 (has links)
No description available.
|
5 |
FUNCTIONAL CHARACTERIZATION OF THE HOLT-ORAM SYNDROME ASSOCIATED TRANSCRIPTION FACTOR Tbx5 DURING EMBRYONIC HEART DEVELOPOMENTPLAGEMAN, TIMOTHY F., JR. 13 July 2006 (has links)
No description available.
|
6 |
Régulation de l’identité des membres postérieurs par le facteur de transcription à boîte T Tbx4Ouimette, Jean-François 08 1900 (has links)
Bien que partageant une homologie structurelle évidente, les membres antérieurs (MA) sont toujours différents des membres postérieurs (MP). Ceci suggère l’existence d’un programme générique de formation d’un membre, un bauplan, qui doit être modulé de façon spécifique pour engendrer cette différence antéro-postérieure de l’identité. Nous avons donc voulu identifier les mécanismes déployés durant l’évolution pour permettre la mise en place de l’identité des membres. Le laboratoire avait précédemment caractérisé, chez les souris où le gène Pitx1 est inactivé, une transformation partielle des MP en MA couplée à une perte de croissance. Nous avons donc cherché à comprendre les mécanismes en aval de Pitx1 dans la détermination de l’identité postérieure. Notre démarche nous a permis d’identifier les gènes affectés par la perte de Pitx1 dans les MP, où nous avons confirmé une dérégulation de l’expression de Tbx4. Tbx4 et Tbx5 sont des candidats évidents pour déterminer l’identité, leur expression étant restreinte aux MP et MA, respectivement, mais leur implication dans ce processus était sujette à controverse.
Nous avons donc évalué l’apport de Tbx4 en aval de Pitx1 dans les processus d’identité en restaurant son expression dans les MP des souris Pitx1-/-. Ce faisant, nous avons pu montrer que Tbx4 est capable de pallier la perte de Pitx1 dans le MP, en rétablissant à la fois les caractères d’identité postérieure et la croissance. En parallèle, nous avons montré que Tbx5 était capable de rétablir la croissance mais non l’identité des MP Pitx1-/-, démontrant ainsi de façon définitive une propriété propre à Tbx4 dans la détermination de l’identité des membres postérieure.
La caractérisation de l’activité transcriptionnelle de Tbx4 et Tbx5 nous a permis de mettre en évidence un domaine activateur conservé mais aussi un domaine spécifique à Tbx4, répresseur de la transcription. Par ailleurs, une mutation faux-sens de TBX4 dans les patients atteints du syndrome coxo-podo-patellaire, TBX4Q531R, inactive le domaine répresseur, empêchant la compensation de l’identité mais non de la croissance des MP dépourvus de Pitx1, démontrant l’importance de cette fonction dans l’identité postérieure. La caractérisation de l’activité répressive de Tbx4, qui se manifeste seulement dans les membres postérieurs démontre l’importance de cette fonction dans l’identité postérieure. Nous avons aussi été en mesure d’identifier un corépresseur qui est suffisant pour supporter cette activité de Tbx4. Enfin, nous avons pu aussi démontrer l’activité transcriptionnelle d’un représentant du gène ancestral, présent chez Amphioxus, qui se comporte strictement comme un activateur et semble dépourvu du domaine répresseur. En somme, nous avons précisé le rôle de Tbx4 et Tbx5, ainsi que leur mécanisme, dans la détermination de l’identité des membres. Globalement, nos travaux permettent d’élaborer une théorie où une divergence d’activité transcriptionnelle de Tbx4 et Tbx5 est responsable de l’identité des membres et même entrevoir que cette divergence d’activité soit à la base de son apparition durant l’évolution. / Forelimbs and hindlimbs are a classical example of serial homology, suggesting they share an evolutionary common generic program that directs their formation. Identity is presumably derived from specific modulations of that program in different limb type. Transcription factors are prime candidates to link these structural differences to specific modulations and three factors with limb-specific expression have been identified. Pitx1 and Tbx4 expression is restricted to the hindlimbs while Tbx5 is restricted to the forelimbs and they have all been ascribed functions in both growth and identity from knockout and overexpression studies. Recent studies have produce evidence that Tbx4 and Tbx5 are interchangeable, sharing identical properties to support growth but not identity of the limbs, the latter being a direct consequence of Pitx1 expression. Indeed, Pitx1 deficient mice have been previously described as undergoing a hindlimb-to-forelimb transformation in addition of growth defects.
To better assess the shared and specific properties of Tbx4 and Tbx5, we assessed their capacities to rescue identity and growth defects by expression studies in Pitx1-/- hindlimbs. Specifically, previous studies had shown that Pitx1 deficiency causes the loss of hindlimb features, the transformation of hindlimb features toward forelimb-like morphology, the gain of a forelimb feature and the asymmetric loss of growth at the level of the femur. Targeted expression in the limbs of both Tbx4 and Tbx5 rescued the growth defects similarly. Interestingly, only Tbx4 was able to restore identity features affected in absence of Pitx1.
To further assess these shared and specific properties, we conducted transcriptional assays that revealed the presence of a shared and conserved transactivating domain in the C-terminal moiety of these proteins. Moreover, we could identify a repressor domain specific to Tbx4. Human small patella syndrome maps to TBX4 and a coding mutation, TBX4Q531R, that specifically inactivates the repressive properties of Tbx4 prevents it from rescuing identity to the Pitx1-/- hindlimbs but not from rescuing growth. We also conducted a yeast two-hybrid assay that allowed the identification of putative co-factors of Tbx4, of which one seems to act as a co-repressor.
Together, our results support the presence of a Tbx4/Tbx5 conserved activating domain required for limb outgrowth that is an integral part of the limb bauplan. Importantly, we identified a molecular basis for the determination of limb identity through the Tbx4-specific repressor domain and reveal a novel path through which limb identity may have emerged during evolution.
|
7 |
Régulation de l’identité des membres postérieurs par le facteur de transcription à boîte T Tbx4Ouimette, Jean-François 08 1900 (has links)
Bien que partageant une homologie structurelle évidente, les membres antérieurs (MA) sont toujours différents des membres postérieurs (MP). Ceci suggère l’existence d’un programme générique de formation d’un membre, un bauplan, qui doit être modulé de façon spécifique pour engendrer cette différence antéro-postérieure de l’identité. Nous avons donc voulu identifier les mécanismes déployés durant l’évolution pour permettre la mise en place de l’identité des membres. Le laboratoire avait précédemment caractérisé, chez les souris où le gène Pitx1 est inactivé, une transformation partielle des MP en MA couplée à une perte de croissance. Nous avons donc cherché à comprendre les mécanismes en aval de Pitx1 dans la détermination de l’identité postérieure. Notre démarche nous a permis d’identifier les gènes affectés par la perte de Pitx1 dans les MP, où nous avons confirmé une dérégulation de l’expression de Tbx4. Tbx4 et Tbx5 sont des candidats évidents pour déterminer l’identité, leur expression étant restreinte aux MP et MA, respectivement, mais leur implication dans ce processus était sujette à controverse.
Nous avons donc évalué l’apport de Tbx4 en aval de Pitx1 dans les processus d’identité en restaurant son expression dans les MP des souris Pitx1-/-. Ce faisant, nous avons pu montrer que Tbx4 est capable de pallier la perte de Pitx1 dans le MP, en rétablissant à la fois les caractères d’identité postérieure et la croissance. En parallèle, nous avons montré que Tbx5 était capable de rétablir la croissance mais non l’identité des MP Pitx1-/-, démontrant ainsi de façon définitive une propriété propre à Tbx4 dans la détermination de l’identité des membres postérieure.
La caractérisation de l’activité transcriptionnelle de Tbx4 et Tbx5 nous a permis de mettre en évidence un domaine activateur conservé mais aussi un domaine spécifique à Tbx4, répresseur de la transcription. Par ailleurs, une mutation faux-sens de TBX4 dans les patients atteints du syndrome coxo-podo-patellaire, TBX4Q531R, inactive le domaine répresseur, empêchant la compensation de l’identité mais non de la croissance des MP dépourvus de Pitx1, démontrant l’importance de cette fonction dans l’identité postérieure. La caractérisation de l’activité répressive de Tbx4, qui se manifeste seulement dans les membres postérieurs démontre l’importance de cette fonction dans l’identité postérieure. Nous avons aussi été en mesure d’identifier un corépresseur qui est suffisant pour supporter cette activité de Tbx4. Enfin, nous avons pu aussi démontrer l’activité transcriptionnelle d’un représentant du gène ancestral, présent chez Amphioxus, qui se comporte strictement comme un activateur et semble dépourvu du domaine répresseur. En somme, nous avons précisé le rôle de Tbx4 et Tbx5, ainsi que leur mécanisme, dans la détermination de l’identité des membres. Globalement, nos travaux permettent d’élaborer une théorie où une divergence d’activité transcriptionnelle de Tbx4 et Tbx5 est responsable de l’identité des membres et même entrevoir que cette divergence d’activité soit à la base de son apparition durant l’évolution. / Forelimbs and hindlimbs are a classical example of serial homology, suggesting they share an evolutionary common generic program that directs their formation. Identity is presumably derived from specific modulations of that program in different limb type. Transcription factors are prime candidates to link these structural differences to specific modulations and three factors with limb-specific expression have been identified. Pitx1 and Tbx4 expression is restricted to the hindlimbs while Tbx5 is restricted to the forelimbs and they have all been ascribed functions in both growth and identity from knockout and overexpression studies. Recent studies have produce evidence that Tbx4 and Tbx5 are interchangeable, sharing identical properties to support growth but not identity of the limbs, the latter being a direct consequence of Pitx1 expression. Indeed, Pitx1 deficient mice have been previously described as undergoing a hindlimb-to-forelimb transformation in addition of growth defects.
To better assess the shared and specific properties of Tbx4 and Tbx5, we assessed their capacities to rescue identity and growth defects by expression studies in Pitx1-/- hindlimbs. Specifically, previous studies had shown that Pitx1 deficiency causes the loss of hindlimb features, the transformation of hindlimb features toward forelimb-like morphology, the gain of a forelimb feature and the asymmetric loss of growth at the level of the femur. Targeted expression in the limbs of both Tbx4 and Tbx5 rescued the growth defects similarly. Interestingly, only Tbx4 was able to restore identity features affected in absence of Pitx1.
To further assess these shared and specific properties, we conducted transcriptional assays that revealed the presence of a shared and conserved transactivating domain in the C-terminal moiety of these proteins. Moreover, we could identify a repressor domain specific to Tbx4. Human small patella syndrome maps to TBX4 and a coding mutation, TBX4Q531R, that specifically inactivates the repressive properties of Tbx4 prevents it from rescuing identity to the Pitx1-/- hindlimbs but not from rescuing growth. We also conducted a yeast two-hybrid assay that allowed the identification of putative co-factors of Tbx4, of which one seems to act as a co-repressor.
Together, our results support the presence of a Tbx4/Tbx5 conserved activating domain required for limb outgrowth that is an integral part of the limb bauplan. Importantly, we identified a molecular basis for the determination of limb identity through the Tbx4-specific repressor domain and reveal a novel path through which limb identity may have emerged during evolution.
|
8 |
Diversité fonctionnelle du facteur de transcription Tbx5 dans le coeurGeorges, Romain O. 08 1900 (has links)
Le cœur des vertébrés est un organe modulaire qui requiert le " patterning " complexe des champs morphogénétiques cardiogènes et la convergence coordonnée des diverses sous-populations de progéniteurs cardiogéniques. Au moins 7 facteurs de transcription de la famille T-box coopèrent au sein de ces nombreuses sous-populations de progéniteurs cardiogéniques afin de réguler la morphogenèse et l’agencement de multiples structures le long de l’ébauche cardiaque, ce qui explique que les mutations humaines de ces gènes engendrent diverses malformations congénitales cardiaques (MCCs). L’un de ces gènes T-box, Tbx5, dont l’haploinsuffisance génère le syndrome de Holt-Oram (SHO), intervient dans une grande variété de réseaux de régulation géniques (RRGs) qui orchestrent la morphogenèse des oreillettes, du ventricule gauche, de la valve mitrale, des septums inter-auriculaire et inter-ventriculaire, ainsi que du système de conduction cardiaque. La diversité des RRGs impliqués dans la formation de ces structures cardiaques suggère que Tbx5 détient une profusion de fonctions qui ne seront identifiables qu’en répertoriant ses activités moléculaires dans chaque lignée cardiaque examinée isolément. Afin d’aborder cette problématique, une ablation génétique de Tbx5 dans l’endocarde a été réalisée. Cette expérience a démontré le rôle crucial de Tbx5 dans la survie des cellules endocardiques bordant le septum primum et des cardiomyocytes au sein de cette structure embryonnaire qui contribuera à la morphogenèse du septum inter-auriculaire. En outre, cette étude a révélé l’existence d’une communication croisée entre la sous-population de cellules endocardiques Tbx5+ et le myocarde au niveau du septum primum, afin d’assurer la survie des cardiomyocytes, et ultimement de garantir la maturation du septum inter-auriculaire. Nos résultats confirment aussi l’importance de l’interdépendance génétique (Tbx5 et Gata4 ainsi que Tbx5 et Nos3) entre différents loci dans la morphogenèse de la cloison inter-auriculaire, et particulièrement de l’influence que peut avoir l’environnement sur la pénétrance et l’expressivité des communications inter-auriculaires (CIAs) dans le SHO. En outre, puisque les fonctions d’un gène dépendent ordinairement des différents isoformes qu’il peut générer, une deuxième étude a focalisé davantage sur l’aspect transcriptionnel de Tbx5. Cette approche a mené à la découverte de 6 transcrits alternatifs exhibant des fonctions à la fois communes et divergentes. La caractérisation de 2 de ces isoformes a révélé le rôle de l’isoforme long (Tbx5_v1) dans la régulation de la croissance des cardiomyocytes durant la cardiogénèse, tandis que l’isoforme court (Tbx5_v2), préférentiellement exprimé dans le cœur mature, réprime la croissance cellulaire. Il est donc entièrement concevable que les mutations de TBX5 entraînant une troncation de la région C-terminale accroissent la concentration d’une protéine mutée qui, à l’instar de Tbx5_v2, interfère avec la croissance de certaines structures cardiaques. En revanche, la divergence de fonctions de ces isoformes, caractérisée par les disparités de localisation subcellulaire et de d’interaction avec d’autres cofacteurs cardiaques, suggère que les mutations affectant davantage un isoforme favoriseraient l’émergence d’un type particulier de MCC. Finalement, un dernier objectif était d’identifier le ou les mécanisme(s) moléculaire(s) par le(s)quel(s) Tbx5 régule son principal gène cible, Nppa, et d’en extraire les indices qui éclairciraient sa fonction transcriptionnelle. Cet objectif nécessitait dans un premier lieu d’identifier les différents modules cis-régulateurs (MCRs) coordonnant la régulation transcriptionnelle de Nppa et Nppb, deux gènes natriurétiques dont l’organisation en tandem et le profil d’expression durant la cardiogénèse sont conservés dans la majorité des vertébrés. L’approche d’empreinte phylogénétique employée pour scanner le locus Nppb/Nppa a permis d’identifier trois MCRs conservés entre diverses espèces de mammifères, dont un (US3) est spécifique aux euthériens. Cette étude a corroboré que la régulation de l’expression du tandem génique Nppb/Nppa requérait l’activité transcriptionnelle d’enhancers en complément aux promoteurs de Nppa et Nppb. La concordance quasiment parfaite entre les profils d’expression de Tbx5 et de ces deux gènes natriurétiques chez les mammifères, suggère que le gradient d’expression ventriculaire de Tbx5 est interprété par le recrutement de ce facteur au niveau des différents enhancers identifiés. En somme, les études présentées dans cette thèse ont permis de clarifier la profusion de fonctions cardiaques que possède Tbx5. Certaines de ces fonctions émanent de l’épissage alternatif de Tbx5, qui favorise la synthèse d’isoformes dotés de propriétés spécifiques. Les diverses interactions combinatoires entre ces isoformes et d’autres facteurs cardiaques au sein des diverses sous-populations de progéniteurs cardiogènes contribuent à l’émergence de RRGs cardiaques divergents. / The vertebrate heart is a modular organ, which requires the complex patterning of the morphogenetic heart fields and the coordinated convergence of the diverse subpopulations of cardiogenic progenitors. At least 7 transcription factors of the T-box family cooperate within these numerous subpopulations of cardiogenic progenitors to regulate the morphogenesis and the layout of multiple structures along the primordial heart tube, which explains that the human mutations of these genes induce various congenital heart defects (CHDs). One of these T-box genes, Tbx5, whose haploinsufficiency generates the Holt-Oram syndrome (HOS), intervenes in a wide variety of gene regulatory networks (GRNs) that orchestrate the morphogenesis of the atria, the left ventricle, the mitral valve, the inter-atrial and inter-ventricular septa, as well as the cardiac conduction system. The diversity of GRNs involved in the formation of these cardiac structures suggests that Tbx5 holds a profusion of functions which will be identifiable only by indexing its molecular activities in each separately examined cardiac lineage. To address this problem, a conditional knockout of Tbx5 in the endocardium was generated. This experiment demonstrated a crucial role of Tbx5 in the survival of the endocardial cells lining the septum primum and the cardiomyocytes within this embryonic structure, which will contribute to the morphogenesis of the inter-atrial septum. Moreover, this study revealed a crosstalk between the Tbx5-positive endocardial cells subpopulation and the myocardium at the level of the septum primum to ensure the survival of cardiomyocytes, and ultimately to guarantee the maturation of the inter-atrial septum. Our results also confirmed the importance of genetic interdependence (Tbx5 and Gata4 as well as Tbx5 and Nos3) between different loci in the morphogenesis of the inter-atrial septum, and particularly the influence that the environment can have on the penetrance and the expressivity of atrial septal defects (ASDs) in the HOS. Besides, since the functions of a gene usually depend on the different isoforms it can generate, a second study focused more on the transcriptional aspect of Tbx5. This approach led to the discovery of 6 alternative transcripts exhibiting both common and specific functions. The characterization of 2 of these isoforms revealed the role of the long isoform (Tbx5_v1) in the regulation of cardiomyocytes growth during cardiogenesis, whereas the short isoform (Tbx5_v2), preferentially expressed in the mature heart, represses cell growth. It is thus entirely conceivable that TBX5 mutations leading to a C-terminal truncation increase the concentration of a mutated protein, which, like Tbx5_v2, interferes with the growth of certain cardiac structures. On the other hand, the divergence of functions of these isoforms, characterized by the disparities of subcellular localization and interaction with other cardiac cofactors, suggests that mutations affecting more one isoform would favor the emergence of a particular type of CHD. Finally, a last objective was to identify one or several molecular mechanism(s) by which Tbx5 regulates its main target gene, Nppa, and to extract clues that might clarify its transcriptional function. This objective required in a first place to identify the various cis-regulatory modules (CRMs) coordinating the transcriptional regulation of Nppa and Nppb, two natriuretic genes whose tandem organization and expression pattern during cardiogenesis are preserved in most vertebrates. The phylogenetic footprint approach employed to scan the Nppb/Nppa locus allowed the identification of three CRMs evolutionary conserved between different mammals species, one of which (US3) is specific to eutherians. This study confirmed that the regulation of the tandem genes Nppb/Nppa required the transcriptional activity of enhancers in complement to Nppa and Nppb promoters. The almost perfect concordance between the expression profiles of Tbx5 and these two natriuretic genes in mammals, suggests that the ventricular expression gradient of Tbx5 is interpreted by the recruitment of this factor to the identified enhancers. Altogether, the studies presented in this thesis allowed clarifying the profusion of Tbx5 cardiac functions. Some of these functions emanate from the alternative splicing of Tbx5, which favors the synthesis of isoforms endowed with specific properties. The diverse combinatorial interactions between these isoforms and other cardiac factors within the various cardiogenic progenitor subpopulations contribute to the emergence of distinct cardiac RRGs.
|
9 |
Diversité fonctionnelle du facteur de transcription Tbx5 dans le coeurGeorges, Romain O. 08 1900 (has links)
Le cœur des vertébrés est un organe modulaire qui requiert le " patterning " complexe des champs morphogénétiques cardiogènes et la convergence coordonnée des diverses sous-populations de progéniteurs cardiogéniques. Au moins 7 facteurs de transcription de la famille T-box coopèrent au sein de ces nombreuses sous-populations de progéniteurs cardiogéniques afin de réguler la morphogenèse et l’agencement de multiples structures le long de l’ébauche cardiaque, ce qui explique que les mutations humaines de ces gènes engendrent diverses malformations congénitales cardiaques (MCCs). L’un de ces gènes T-box, Tbx5, dont l’haploinsuffisance génère le syndrome de Holt-Oram (SHO), intervient dans une grande variété de réseaux de régulation géniques (RRGs) qui orchestrent la morphogenèse des oreillettes, du ventricule gauche, de la valve mitrale, des septums inter-auriculaire et inter-ventriculaire, ainsi que du système de conduction cardiaque. La diversité des RRGs impliqués dans la formation de ces structures cardiaques suggère que Tbx5 détient une profusion de fonctions qui ne seront identifiables qu’en répertoriant ses activités moléculaires dans chaque lignée cardiaque examinée isolément. Afin d’aborder cette problématique, une ablation génétique de Tbx5 dans l’endocarde a été réalisée. Cette expérience a démontré le rôle crucial de Tbx5 dans la survie des cellules endocardiques bordant le septum primum et des cardiomyocytes au sein de cette structure embryonnaire qui contribuera à la morphogenèse du septum inter-auriculaire. En outre, cette étude a révélé l’existence d’une communication croisée entre la sous-population de cellules endocardiques Tbx5+ et le myocarde au niveau du septum primum, afin d’assurer la survie des cardiomyocytes, et ultimement de garantir la maturation du septum inter-auriculaire. Nos résultats confirment aussi l’importance de l’interdépendance génétique (Tbx5 et Gata4 ainsi que Tbx5 et Nos3) entre différents loci dans la morphogenèse de la cloison inter-auriculaire, et particulièrement de l’influence que peut avoir l’environnement sur la pénétrance et l’expressivité des communications inter-auriculaires (CIAs) dans le SHO. En outre, puisque les fonctions d’un gène dépendent ordinairement des différents isoformes qu’il peut générer, une deuxième étude a focalisé davantage sur l’aspect transcriptionnel de Tbx5. Cette approche a mené à la découverte de 6 transcrits alternatifs exhibant des fonctions à la fois communes et divergentes. La caractérisation de 2 de ces isoformes a révélé le rôle de l’isoforme long (Tbx5_v1) dans la régulation de la croissance des cardiomyocytes durant la cardiogénèse, tandis que l’isoforme court (Tbx5_v2), préférentiellement exprimé dans le cœur mature, réprime la croissance cellulaire. Il est donc entièrement concevable que les mutations de TBX5 entraînant une troncation de la région C-terminale accroissent la concentration d’une protéine mutée qui, à l’instar de Tbx5_v2, interfère avec la croissance de certaines structures cardiaques. En revanche, la divergence de fonctions de ces isoformes, caractérisée par les disparités de localisation subcellulaire et de d’interaction avec d’autres cofacteurs cardiaques, suggère que les mutations affectant davantage un isoforme favoriseraient l’émergence d’un type particulier de MCC. Finalement, un dernier objectif était d’identifier le ou les mécanisme(s) moléculaire(s) par le(s)quel(s) Tbx5 régule son principal gène cible, Nppa, et d’en extraire les indices qui éclairciraient sa fonction transcriptionnelle. Cet objectif nécessitait dans un premier lieu d’identifier les différents modules cis-régulateurs (MCRs) coordonnant la régulation transcriptionnelle de Nppa et Nppb, deux gènes natriurétiques dont l’organisation en tandem et le profil d’expression durant la cardiogénèse sont conservés dans la majorité des vertébrés. L’approche d’empreinte phylogénétique employée pour scanner le locus Nppb/Nppa a permis d’identifier trois MCRs conservés entre diverses espèces de mammifères, dont un (US3) est spécifique aux euthériens. Cette étude a corroboré que la régulation de l’expression du tandem génique Nppb/Nppa requérait l’activité transcriptionnelle d’enhancers en complément aux promoteurs de Nppa et Nppb. La concordance quasiment parfaite entre les profils d’expression de Tbx5 et de ces deux gènes natriurétiques chez les mammifères, suggère que le gradient d’expression ventriculaire de Tbx5 est interprété par le recrutement de ce facteur au niveau des différents enhancers identifiés. En somme, les études présentées dans cette thèse ont permis de clarifier la profusion de fonctions cardiaques que possède Tbx5. Certaines de ces fonctions émanent de l’épissage alternatif de Tbx5, qui favorise la synthèse d’isoformes dotés de propriétés spécifiques. Les diverses interactions combinatoires entre ces isoformes et d’autres facteurs cardiaques au sein des diverses sous-populations de progéniteurs cardiogènes contribuent à l’émergence de RRGs cardiaques divergents. / The vertebrate heart is a modular organ, which requires the complex patterning of the morphogenetic heart fields and the coordinated convergence of the diverse subpopulations of cardiogenic progenitors. At least 7 transcription factors of the T-box family cooperate within these numerous subpopulations of cardiogenic progenitors to regulate the morphogenesis and the layout of multiple structures along the primordial heart tube, which explains that the human mutations of these genes induce various congenital heart defects (CHDs). One of these T-box genes, Tbx5, whose haploinsufficiency generates the Holt-Oram syndrome (HOS), intervenes in a wide variety of gene regulatory networks (GRNs) that orchestrate the morphogenesis of the atria, the left ventricle, the mitral valve, the inter-atrial and inter-ventricular septa, as well as the cardiac conduction system. The diversity of GRNs involved in the formation of these cardiac structures suggests that Tbx5 holds a profusion of functions which will be identifiable only by indexing its molecular activities in each separately examined cardiac lineage. To address this problem, a conditional knockout of Tbx5 in the endocardium was generated. This experiment demonstrated a crucial role of Tbx5 in the survival of the endocardial cells lining the septum primum and the cardiomyocytes within this embryonic structure, which will contribute to the morphogenesis of the inter-atrial septum. Moreover, this study revealed a crosstalk between the Tbx5-positive endocardial cells subpopulation and the myocardium at the level of the septum primum to ensure the survival of cardiomyocytes, and ultimately to guarantee the maturation of the inter-atrial septum. Our results also confirmed the importance of genetic interdependence (Tbx5 and Gata4 as well as Tbx5 and Nos3) between different loci in the morphogenesis of the inter-atrial septum, and particularly the influence that the environment can have on the penetrance and the expressivity of atrial septal defects (ASDs) in the HOS. Besides, since the functions of a gene usually depend on the different isoforms it can generate, a second study focused more on the transcriptional aspect of Tbx5. This approach led to the discovery of 6 alternative transcripts exhibiting both common and specific functions. The characterization of 2 of these isoforms revealed the role of the long isoform (Tbx5_v1) in the regulation of cardiomyocytes growth during cardiogenesis, whereas the short isoform (Tbx5_v2), preferentially expressed in the mature heart, represses cell growth. It is thus entirely conceivable that TBX5 mutations leading to a C-terminal truncation increase the concentration of a mutated protein, which, like Tbx5_v2, interferes with the growth of certain cardiac structures. On the other hand, the divergence of functions of these isoforms, characterized by the disparities of subcellular localization and interaction with other cardiac cofactors, suggests that mutations affecting more one isoform would favor the emergence of a particular type of CHD. Finally, a last objective was to identify one or several molecular mechanism(s) by which Tbx5 regulates its main target gene, Nppa, and to extract clues that might clarify its transcriptional function. This objective required in a first place to identify the various cis-regulatory modules (CRMs) coordinating the transcriptional regulation of Nppa and Nppb, two natriuretic genes whose tandem organization and expression pattern during cardiogenesis are preserved in most vertebrates. The phylogenetic footprint approach employed to scan the Nppb/Nppa locus allowed the identification of three CRMs evolutionary conserved between different mammals species, one of which (US3) is specific to eutherians. This study confirmed that the regulation of the tandem genes Nppb/Nppa required the transcriptional activity of enhancers in complement to Nppa and Nppb promoters. The almost perfect concordance between the expression profiles of Tbx5 and these two natriuretic genes in mammals, suggests that the ventricular expression gradient of Tbx5 is interpreted by the recruitment of this factor to the identified enhancers. Altogether, the studies presented in this thesis allowed clarifying the profusion of Tbx5 cardiac functions. Some of these functions emanate from the alternative splicing of Tbx5, which favors the synthesis of isoforms endowed with specific properties. The diverse combinatorial interactions between these isoforms and other cardiac factors within the various cardiogenic progenitor subpopulations contribute to the emergence of distinct cardiac RRGs.
|
10 |
Histone Deacetylase 3 Coordinates Heart Development Through Stage-Specific Roles in Cardiac Progenitor CellsLewandowski, Sara L. 21 December 2016 (has links)
Disruptions in cardiac development cause congenital heart disease, the most prevalent and deadly congenital malformation. Genetic and environmental factors are thought to contribute to these defects, however molecular mechanisms remain largely undefined. Recent work highlighted potential roles of chromatin- modifying enzymes in congenital heart disease pathogenesis. Histone deacetylases, a class of chromatin-modifying enzymes, have developmental importance and recognized roles in the mature heart. This thesis aimed to characterize functions of Hdac3 in cardiac development. We found loss of Hdac3 in the primary heart field causes precocious progenitor cell differentiation, resulting in hypoplastic ventricular walls, ventricular septal defect, and mid- gestational lethality. In primary heart field progenitors, Hdac3 interacts with, deacetylates, and functionally suppresses transcription factor Tbx5. Furthermore, a disease-associated Tbx5 mutation disrupts this interaction, rendering Tbx5 hyperacetylated and hyperactive. By contrast, deletion of Hdac3 in second heart field progenitors bypasses these defects, instead causing malformations in the outflow tract and semilunar valves, with lethality prior to birth. Affected semilunar valves and outflow tract vessels exhibit extracellular matrix and EndMT defects and activation of the Tgfβ1 signaling pathway. In normal second heart field development, Hdac3 represses Tgfβ1 transcription, independent of its deacetylase activity, by recruiting the PRC2 methyltransferase complex to methylate the Tgfβ1 promoter. Importantly, knockouts of Hdac3 in differentiated cardiac cells do not fully recapitulate the progenitor-specific knockout phenotypes. These results illustrate spatiotemporal roles of Hdac3, both deacetylase-dependent and deacetylase-independent, in cardiac development, suggesting that dysregulation of Hdac3 in cardiac progenitor cells could be a contributing factor in congenital heart disease pathogenesis.
|
Page generated in 0.05 seconds