Spelling suggestions: "subject:"teilchenbeschleuniger"" "subject:"beschleunigung""
1 |
Der Einfluss des fundamentalen Massenverhältnisses auf die Teilchenbeschleunigung durch Plasmainstabilitäten / The influence of the fundamental mass-ratio on particle acceleration by plasma instabilitiesBurkart, Thomas January 2010 (has links) (PDF)
Im Rahmen dieser Arbeit wurde ein dreidimensionaler vollrelativistischer und parallelisierter Particle-in-Cell Code geschrieben, ausführlich getestet und angewandt. Der Code ACRONYM ist variabel einsetzbar und von der Genauigkeit und Stabilität her State-of-the-Art und somit konkurrenzfähig zu den sonstigen in der Astrophysik eingesetzten Codes anderer Gruppen. Die Energie bleibt bis auf einen Fehler von < 0.03% erhalten, die Divergenz des Magnetfeldes bleibt immer unter einem Wert von 10^{-12} und die Skalierung wurde mittlerweile bis zu einem Clustergröße von einigen 10000 CPUs getestet. In dieser Arbeit wurde dann, nach der Entwicklung des Codes, der Einfluss des fundamentalen Massenverhältnisses m_p/m_e auf die Teilchenbeschleunigung durch Plasmainstabilitäten untersucht. Dies ist relevant und wichtig, da in PiC-Simulationen in den allermeisten Fällen nicht mit dem realen Massenverhältnis gerechnet wird, da sonst viel zu viel Rechenleistung benötigt würde, um zu sehen, was mit den Protonen geschieht und was ihr Einfluss auf die leichten Teilchen wie Elektronen und Positronen ist. Zu diesem Zweck wurden Simulationen mit Massenverhältnissen zwischen m_p/m_e = 1.0 und 200.0 durchgeführt. Diese haben alle gemeinsam, dass periodische Randbedingungen verwendet wurden und das zur Verfügung stehende Simulationsgebiet mit jeweils zwei gegeneinander strömenden Plasmapopulationen vollständig gefüllt wurde, um jegliche Art von auftretenden Schocks auszuschließen. Die Rohdaten der einzelnen Simulationen wurden auf vielfältige Art und Weise analysiert, es wurden z.B. Schnitte durch die Teilchenverteilung erstellt, sowie ein- oder zweidimensionale Histogramme und Energieverläufe betrachtet. Dabei haben sich folgende Kernpunkte ergeben: Für Massenverhältnisse bis etwa m_p/m_e = 20 bildet sich die gesamte Zweistrom-Instabilität in nur einer Phase aus, das heißt, es bilden sich von ringförmigen Magnetfeldern umgebene Flussschläuche aus, die dann verschmelzen, bis nur noch zwei übrig sind und alle Teilchen werden über den gesamten Verlauf der Instabilität beschleunigt. Es ist damit zu folgern, dass die unterschiedlich schweren Teilchenspezies Protonen und Elektronen/Positronen durch die relativ nahe beieinander liegenden Massen noch so stark gekoppelt sind, dass sich nur eine Instabilität entwickeln kann. Bei großen Massenverhältnissen (m_p/m_e > 20) ist eine deutliche Trennung in zwei Phasen der Instabilität zu erkennen. Zuerst bilden sich wiederum Flussschläuche aus, diese verschmelzen miteinander (zu zweien oder mehr), bevor der erste Teil der Instabilität abflaut. Anschließend entstehen wieder ringförmige Magnetfelder und Flussschläuche, von denen einer meist deutlich stärker ist als all die anderen, das bedeutet, dass dieser von stärkeren Magnetfeldern umgeben ist und eine höhere Teilchendichte aufweist. Im Rahmen dieser zweigeteilten Instabilität werden die Elektronen und Positronen nur in der ersten Phase signifikant beschleunigt, die deutlich schwereren Protonen gewinnen über den gesamten Zeitraum Energie. Die höchstenergetischen Teilchen erreichen im Ruhesystem der jeweiligen Plasmapopulation Werte um gamma = 250. Man kann daraus für zukünftige Untersuchungen mit Hilfe von Particle-in-Cell Codes den Schluss ziehen, dass Rückschlüsse auf das tatsächliche Verhalten beim realen Massenverhältnis von m_p/m_e = 1836.2 nur aus den Simulationen mit m_p/m_e >> 20 gezogen werden können, da die starke Kopplung der leichten und schweren Teilchen bei kleineren Massenverhältnissen die Ergebnisse sehr stark beeinflusst. Es wurde anhand der gemessenen Zeitpunkte der Instabilitätsmaxima eine Extrapolation durchgeführt, die zeigt, dass die Instabilität beim realen Massenverhältnis etwa bei t = 1400 omega_{pe}^{-1} auftreten würde. Um dies wirklich zu simulieren müsste allerdings mehr als die 1000-fache Anzahl an CPU-Stunden aufgewandt werden. Des weiteren wurde eine Maxwell-Jüttner-Verteilung an die Teilchenverteilungen der einzelnen Simulationen auf dem Höhepunkt der Instabilität gefittet, um sowohl die neue Temperatur des Plasmas als auch die Beschleunigungseffizienz des Prozesses zu berechnen. Die Temperatur erhöht sich demnach durch die Instabilität von etwa 10^8K auf 10^{10} bis 10^{11}K, der Anteil suprathermischer Teilchen beträgt 2 bis 4%. / In this thesis a three-dimensional, fully relativistic and parallelised Particle-in-Cell Code was developed, tested and used for astrophysical purposes. The Code ACRONYM can be used for a variety of different scenarios, it is state-of-the-art in matters of stability and accuracy. After the development the code was used to investigate the influence of the fundamental mass ratio m_p/m_e on particle acceleration by plasma instabilities. This is important, because usually in PiC-simulations the mass ratio used isn't the real one m_p/m_e = 1836.2, because this would take too much CPU-time in order to see what happens to the protons and what is their influence on the lighter particles like electrons and positrons. For this purpose simulations with mass ratios between 1.0 and 200.0 have been performed. They all have in common that periodic boundary conditions were used and that the whole computational domain has been filled with particles that are counterstreaming along the z-direction with gamma approximately 10 each in order to exclude any development of shocks. The resulting main issues are the following: For mass ratios below m_p/m_e approximately 20 the whole instability develops in only one phase, i.e. current filaments surrounded by circular magnetic fields develop and merge together. All particles are accelerated over the whole run, so one can conclude that the different species are still strongly coupled because of the very similar masses of electrons/positrons and the protons and therefore only one instability can arise. For higher mass ratios a distinctive separation of the instability in two phases is observable. First some flux tubes develop and merge until the first phase is over. Afterwards new magnetic fields and flux tubes are arising, where one of them usually is particularly strong compared to the others, i.e. it is surrounded by stronger magnetic fields and holds a much higher particle density. In the context of this split instability, the electrons and positrons are getting accelerated significantly only in the first phase, the much heavier protons gain energy over the whole time. One can therefore conclude for future investigations with PiC codes that informations about the behaviour at the realistic mass ratio of m_p/m_e = 1836.2 can only be gained from the simulations with m_p/m_e >> 20 because of the strong coupling of the light and heavy particles at low mass ratios. An extrapolation to the real mass ratio shows that the peak of the instability would occur approximately seven times later than the runtime of the longest simulation at about t = 1400 omega_{pe}^{-1}, but in order to realize this, at least 1000 times the now used CPU-hours would be necessary. Furthermore the acceleration efficiency for this process was calculated by fitting a Maxwell-Jüttner-Distribution to the particle distribution from the simulations during the peak of the instabilities. The calculated fraction of superthermal particles is in the range of 2 to 4% and the temperatures of the plasma streams rise from 10^8 at the beginning of the simulations to values around 10^10 to 10^11K.
|
2 |
Teilchenbeschleunigung an kollisionsfreien Schockfronten / Partical acceleration at collisionless shock frontsKilian, Patrick January 2015 (has links) (PDF)
Das Magnetfeld der Sonne ist kein einfaches statisches Dipolfeld, sondern weist
wesentlich kompliziertere Strukturen auf. Wenn Rekonnexion die Topologie eines
Feldlinienbündels verändert, wird viel Energie frei, die zuvor im Magnetfeld
gespeichert war. Das abgetrennte Bündel wird mit dem damit verbundenen Plasma
mit großer Geschwindigkeit durch die Korona
von der Sonne weg bewegen. Dieser Vorgang wird als koronaler Massenauswurf
bezeichnet. Da diese Bewegung mit Geschwindigkeiten deutlich über der
Alfv\'en-Geschwindigkeit, der kritischen Geschwindigkeit im Sonnenwind,
erfolgen kann, bildet sich eine Schockfront, die durch den Sonnenwind
propagiert.
Satelliten, die die Bedingungen im Sonnenwind beobachten, detektieren beim
Auftreten solcher Schockfronten einen erhöhten Fluss von hochenergetischen
Teilchen. Mit Radioinstrumenten empfängt man zeitgleich elektromagnetische
Phänomene, die als Radiobursts bezeichnet werden, und ebenfalls für die
Anwesenheit energiereicher Teilchen sprechen. Daher, und aufgrund von
theoretischen Überlegungen liegt es nahe, anzunehmen, daß Teilchen an der
Schockfront beschleunigt werden können.
Die Untersuchung der Teilchenbeschleunigung an kollisionsfreien Schockfronten
ist aber noch aus einem zweiten Grund interessant. Die Erde wird kontinuierlich
von hochenergetischen Teilchen, die aus historischen Gründen als kosmische
Strahlung bezeichnet werden, erreicht. Die gängige Theorie für deren Herkunft
besagt, daß zumindest der galaktische Anteil durch die Beschleunigung an
Schockfronten, die durch Supernovae ausgelöst wurden, bis zu den beobachteten
hohen Energien gelangt sind. Das Problem bei der Untersuchung der Herkunft der
kosmischen Strahlung ist jedoch, daß die Schockfronten um Supernovaüberreste
aufgrund der großen Entfernung nicht direkt beobachtbar sind.
Es liegt dementsprechend nahe, die Schockbeschleunigung an den wesentlich
näheren und besser zu beobachtenden Schocks im Sonnensystem zu studieren, um so
Modelle und Simulationen entwickeln und testen zu können.
Die vorliegende Arbeit beschäftigt sich daher mit Simulationen von
Schockfronten mit Parametern, die etwa denen von CME getriebenen Schocks
entsprechen. Um die Entwicklung der Energieverteilung der Teilchen zu studieren,
ist ein kinetischer Ansatz nötig. Dementsprechend wurden die Simulationen mit
einem Particle-in-Cell Code durchgeführt. Die Herausforderung ist dabei die
große Spanne zwischen den mikrophysikalischen Zeit- und Längenskalen, die aus
Gründen der Genauigkeit und numerischen Stabilität aufgelöst werden müssen und
den wesentlich größeren Skalen, die die Schockfront umfasst und auf der
Teilchenbeschleunigung stattfindet.
Um die Stabilität und physikalische Aussagekraft der Simulationen
sicherzustellen, werden die numerischen Bausteine mittels Testfällen, deren
Verhalten bekannt ist, gründlich auf ihre Tauglichkeit und korrekte
Implementierung geprüft.
Bei den resultierenden Simulationen wird das Zutreffen von analytischen
Vorhersagen (etwa die Einhaltung der Sprungbedingungen) überprüft. Auch die
Vorhersagen einfacherer Plasmamodelle, etwa für das elektrostatischen
Potential an der Schockfront, das man auch aus einer Zwei-Fluid-Beschreibung
erhalten kann, folgen automatisch aus der selbstkonsistenten, kinetischen
Beschreibung. Zusätzlich erhält man Aussagen über das Spektrum und die Bahnen
der beschleunigten Teilchen. / The magnetic field of the sun is not a simple static dipole field but comprises
much more complicated structures. When magnetic reconnection changes the
topology of a structure the large amount of energy that was stored in the
magnetic field is released and can eject the remainder of the magnetic structure
and the plasma that is frozen to the magnetic field lines from the solar corona
at large velocities. This event is called a coronal mass ejection (CME). Given
that the upward motion happens at velocities larger than the local Alfv\'en
speed, the critical speed in the solar wind, the CME will act as a piston that
drives a shock front through the solar wind ahead of itself.
Satellites that monitor solar wind conditions detect an enhanced flux of high
energy particles associated with the shock front. Radio instruments typically
pick up bursts of electromagnetic emission, termed radio bursts, that are also
consistent with processes driven by energetic particles. Thus, and due to
theoretical considerations, it is safe to assume that particles can be
accelerated at the shock front.
Particle acceleration at collisionless shock fronts is an interesting topic for
another reason. Earth is constantly bombarded by very energetic particles
called (due to historical reasons) cosmic rays. The leading theory for the
production of at least the fraction of cosmic rays that originate in our galaxy
is acceleration at shock fronts, e.g. in super nova remnants. The large
distance and consequently limited observation of these shock fronts restrict
more detailed investigations.
It is therefore useful to study the process of shock acceleration at shocks in
the solar system that are much closer and more approachable to develop and test
models and simulation methods that can be applied in different regimes.
This dissertation aims at simulations of shock fronts with parameters that are
close to the ones occurring in CME driven shocks. Since the goal is the
investigation of the changing particle spectrum fully kinetic methods are
necessary and consequently a particle in cell code was developed and used. The
main challenge there is the large span of time and length scales that range
from the microscopic regime that has to be resolved to guarantee stability and
accuracy to the much larger scales of the entire shock fronts at which the
particle acceleration takes place.
To prove the numerical stability and suitability of the simulations to provide
physical results all numerical building blocks are tested on problems where the
correct behavior is known to verify the correct implementation.
For validation purposes the results of the final shock simulations are compared
with analytic predictions (such as the jump conditions from magneto
hydrodynamics) and predictions of simpler plasma models (such as the cross
shock potential that can be derived from two fluid theory). Finally results
that can only be obtained from a self consistent, fully kinetic model, such as
particle spectra and trajectories, are discussed.
|
3 |
Beschleunigung polarisierter Elektronen in der Bonner Elektronen-Beschleunigeranlage ELSAHoffmann, Markus. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Bonn.
|
4 |
Teilchenbeschleunigung durch ultraintensive Laserimpulse in sphärischen TargetsystemenBusch, Stephan. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Berlin.
|
5 |
Generation and propagation of energetic particles in relativistic laser matter interactionsShorokhov, Oleg. Unknown Date (has links)
University, Diss., 2005--Düsseldorf.
|
6 |
Dosimetrische Charakterisierung laserbeschleunigter Teilchenstrahlen für in vitro Zellbestrahlungen / Dosimetric characterization of laser-accelerated particle beams for in vitro cell irradiationsRichter, Christian 24 July 2017 (has links) (PDF)
Die Anwendung von Hochintensitätslasern zur Beschleunigung von Teilchen bietet eine Alternative zu klassischen Teilchenbeschleunigern und den von diesen erzeugten Strahlenqualitäten. Nach großen Fortschritten auf dem Gebiet der Laser-Teilchenbeschleunigung wurde die Anwendung der neuen Technologie in der klinischen Ionentherapie vorgeschlagen und diskutiert. Bevor es dazu kommen kann, muss aber neben der Verbesserung der Strahleigenschaften, wie z. B. der Erhöhung der Energie, und der Stabilität der Teilchenbeschleunigung auch eine geeignete physikalische und dosimetrische Charakterisierung entwickelt und die biologische Wirksamkeit dieser neuartigen, ultrakurz gepulsten Strahlenqualität mit extrem hoher Pulsdosisleistung untersucht werden. Dies erfordert eine ganze Reihe von umfangreichen Experimenten der notwendigen Translationskette, angefangen von in vitro Zellbestrahlungen über in vivo Studien bis hin zu präklinischen Untersuchungen und ersten klinischen Studien. Hierzu wurden das Verbundprojekt onCOOPtics gegründet und in einem ersten Schritt in vitro Zellbestrahlungen zur Untersuchung der biologischen Wirksamkeit laserbeschleunigter Teilchen durchgeführt. Dazu wurden Dosis-Effekt-Kurven für humane Tumor- und Normalgewebs-Zelllinien jeweils für mehrere biologische Endpunkte bestimmt.
Begonnen wurde dabei mit der umfangreichen Untersuchung laserbeschleunigter Elektronen am JeTi-Lasersystem in Jena, auf welche zum Zeitpunkt der Verfügbarkeit des DRACO-Lasersystems in Dresden die dosimetrische und strahlenbiologische Charakterisierung laserbeschleunigter Protonen an diesem Lasersystem folgte. Dabei stellte die Entwicklung einer präzisen Dosimetrie zur Bestimmung der applizierten Dosis aufgrund der Strahleigenschaften laserbeschleunigter Teilchen eine große Herausforderung dar. Sie ist aber sowohl im Hinblick auf eine spätere klinische Anwendung als auch für die Durchführung quantitativer strahlenbiologischer Experimente obligatorisch. Diese Arbeit, die im Rahmen des Verbundprojektes entstanden ist, leistet dazu in vielfacher Hinsicht einen wesentlichen Beitrag:
Erstens wurden geeignete Detektoren zur präzisen dosimetrischen Charakterisierung laserbeschleunigter Elektronen und Protonen entwickelt, optimiert und charakterisiert sowie präzise kalibriert. So wurden umfangreiche Studien zu verschiedenen Eigenschaften der auch in der klinischen Dosimetrie angewandten radiochromischen Filme durchgeführt und die Filme entsprechend kalibriert. Dabei wurden neue Erkenntnisse u. a. über deren Energieabhängigkeit gewonnen, die für zahlreiche Anwendungen der Filme von Bedeutung sind. Weiterhin wurden verschiedene Ionisationskammern zur Echtzeit-Strahlmonitorierung von laserbeschleunigten Elektronen und Protonen ausgewählt und dosimetrisch charakterisiert. Zudem wurde der Einsatz von CR-39 Festkörperspurdetektoren zur spektroskopischen Untersuchung laserbeschleunigter Protonen etabliert, indem die Nachverarbeitung und Auslesung der Detektoren charakterisiert und optimiert wurden und außerdem eine retrospektive Filterprozedur der detektierten Krater entwickelt und angewendet wurde. Ferner wurde ein Faraday Cup, der auf die speziellen Eigenschaften derzeitiger laserbeschleunigter Protonen-Strahlenqualitäten abgestimmt ist, entwickelt, charakterisiert und mit drei voneinander unabhängigen Methoden kalibriert. Die radiochromischen Filme und der Faraday Cup konnten daraufhin als Referenzdosimeter sowohl an den konventionellen als auch an den neuartigen Laser-Teilchenbeschleunigern erfolgreich eingesetzt werden.
Zweitens bildete die durchgeführte Echtzeit- und Referenzdosimetrie laserbeschleunigter Elektronen die Grundlage für die weltweit ersten systematischen Zellbestrahlungsexperimente dieser Strahlenqualität. Dabei konnten trotz großer Pulsdosisschwankungen alle Anforderungen bezüglich Dosishomogenität, Strahlstabilität, präziser Deposition einer vorgegebenen Dosis und Unsicherheit der bestimmten applizierten Dosis, die für eine quantitative Auswertung der radiobiologischen Daten notwendig sind, erfüllt werden. Exemplarisch sei die bestimmte Gesamt-Dosisunsicherheit von unter 10% genannt.
Drittens wurden auch laserbeschleunigte Protonen so präzise dosimetrisch monitoriert und charakterisiert, dass auch mit dieser Strahlenqualität quantitative strahlenbiologische Untersuchungen durchgeführt werden konnten. Herausgefordert durch die kurze Reichweite der Protonen im Submillimeterbereich und das breite Energiespektrum dieser Strahlenqualität, gelang dies neben der Charakterisierung und Kalibrierung der einzelnen Detektoren durch die Konzeption und Realisierung eines integrierten Dosimetrie- und Zellbestrahlungssystems (IDOCIS).Weltweit erstmalig wurde eine Echtzeit-Strahlmonitorierung während der Zellbestrahlungen mit laserbeschleunigten Protonen durchgeführt, die sowohl zur kontrollierten Applikation einer vorgegebenen Dosis und zur Strahlüberwachung als auch zusammen mit der durchgeführten Referenzdosimetrie zur hochpräzisen Bestimmung der absolut in den Zellen deponierten Dosis diente. Außerdem trug die parallele und redundante Verwendung zweier voneinander unabhängiger Referenzdosimetrie-Systeme erheblich zur Erreichung einer hohen Zuverlässigkeit und Sicherheit bei. Die Unsicherheit in der bestimmten deponierten Dosis betrug entsprechend für den Endpunkt der residualen DNS-Doppelstrangbrüche 24h nach Bestrahlung, für den eine vollständige Dosis-Effekt-Kurve ermittelt wurde, nur ca. 10%. Die Unsicherheit liegt damit schon fast in dem Bereich, der an klinisch angewandten Beschleunigern zulässig ist (3-5%). Dagegen konnte zu Beginn dieser Arbeit die Dosis laserbeschleunigter Protonen nur mit einer Ungenauigkeit von mehr als 50% abgeschätzt werden.
Viertens wurden die zur Bestimmung der relativen biologischen Wirksamkeit notwendigen Vergleichsbestrahlungen mit konventionellen Elektronen- und Protonenstrahlenquellen und die zur Vergleichbarkeit der konventionellen und laserbeschleunigten Strahlenqualitäten erforderlichen Referenzbestrahlungen mit 200kVp Röntgenröhren im Rahmen dieser Arbeit ebenfalls dosimetrisch optimiert und genau charakterisiert.
Die dosimetrischen Ergebnisse der vorliegenden Arbeit waren eine notwendige Voraussetzung für die im Rahmen anderer Arbeiten vollzogene strahlenbiologische Auswertung der durchgeführten Zellbestrahlungen. Dabei wurde insgesamt kein signifikanter Unterschied in der strahlenbiologischen Wirksamkeit zwischen laserbeschleunigten, ultrakurz gepulsten und konventionellen, kontinuierlichen Strahlenqualitäten weder für Elektronen noch für Protonen festgestellt. Durch die Konsistenz dieser Ergebnisse für beide Teilchenarten und unterschiedliche biologische Endpunkte ist damit die nächste Stufe auf dem translationalen Weg hin zur klinischen Anwendung laserbeschleunigter Teilchen begehbar: Die Durchführung von in vivo Untersuchungen. Dabei muss zwar von einer zweidimensionalen (Zell-Monolayer) auf eine dreidimensionale Zielvolumenbestrahlung (Tumor) übergegangen werden, wobei aber die im Rahmen der vorliegenden Arbeit entwickelten Dosimetrieverfahren und Detektoren auch bei den Tierbestrahlungen angewendet und eingesetzt werden können. / The application of high-intensity lasers for particle acceleration provides an alternative to conventional particle accelerators and also alternative beam qualities. Soon after the recent progress in the field of laser particle acceleration, its application in clinical ion therapy was proposed and discussed widely. Besides the improvement of the beam properties (increasing of beam energy and stability of particle acceleration process, e. g.) a capable physical and dosimetric characterization has to be developed before the technology can be applied in cancer therapy. The same is true for investigation of the biological effectiveness of this new, ultra-short pulsed beam quality with extremely high pulse dose rate. Hence, the whole translational chain, beginning from in vitro cell irradiation over in vivo studies to the point of preclinical investigations and first clinical trials, is necessary. For this reason, in a first step the joint research project onCOOPtics was founded and in vitro cell irradiation experiments were performed to study the biological effectiveness of laser accelerated particles. Therefore, dose-effect-curves for tumor and normal tissue cell lines were determined for different biological endpoints.
Starting with extensive experiments with laser accelerated electrons at the JeTi laser system in Jena, the investigations were continued with dosimetric and radiobiological characterization of laser accelerated protons at the DRACO laser system in Dresden shortly after the DRACO laser started its operation. In this process, the development of a precise dosimetry for determination of the applied dose posed a great challenge due to the beam properties of laser accelerated particles. However, this is a crucial and compulsive requirement for both, the future clinical application and also for the realization of quantitative radiobiological experiments. Compiled in the onCOOPtics framework, this paper contributed to this task in multiple key aspects:
Firstly, capable detectors for precise dosimetric characterization of laser accelerated electrons and protons were developed, optimized and characterized as well as precisely calibrated. Thus, comprehensive investigations were performed studying different properties of radiochromic films which are also applied in clinical dosimetry. In addition, these films were precisely calibrated for different beam qualities. Thereby, new findings of the energy dependence of radiochromic films were obtained which are of importance for numerous applications of these films. Moreover, different ionization chambers for real-time beam monitoring of laser accelerated electrons and protons were selected and characterized. Furthermore, the application of CR-39 solid state track detectors was established for spectroscopic investigations of laser accelerated protons by characterizing and optimizing the postirradiation processing and the readout of the detectors. Also a retrospective filter procedure of the detected tracks was developed and applied. Moreover, a Faraday Cup adjusted to the special properties of current laser accelerated proton beam qualities was developed, characterized and precisely calibrated by means of three independent calibration methods. Finally, the radiochromic films and the Faraday Cup could be used as reference dosimeters both for conventional accelerators and also for novel laser particle accelerators.
Secondly, the performed real-time and reference dosimetry of laser accelerated electrons was the prerequisite of the first systematic cell irradiation experiments with this beam quality worldwide. Despite high pulse dose fluctuations, all requirements were satisfied concerning dose homogeneity, beam stability, precise deposition of a prescribed dose and uncertainty of the applied dose, that are all necessary for a quantitative evaluation of the radiobiological data. Exemplary, a total dose uncertainty below 10% was reached.
Thirdly, laser accelerated protons were precisely monitored and characterized allowing quantitative, well-founded radiobiological investigations with this beam quality. This task was very much challenged by the short range of the protons in the sub-millimeter range and the broad energy spectrum of the beam quality. It was succeeded not only due to the comprehensive characterization and precise calibration of the different detectors but also due to the conception and realization of an integrated dosimetry and cell irradiation system (IDOCIS). For the first time, a real-time beam monitoring during cell irradiation with laser accelerated protons was performed. This real-time monitoring was not only used for controlled application of the prescribed dose and beam monitoring and also – together with the performed reference dosimetry – for precise determination of the deposited dose at cell location. In addition, high reliability and safety was considerably ensured by using two independent reference dosimetry systems in parallel. Hence, the determined uncertainty of the deposited dose was only about 10% for the biological endpoint of the residual DNA double strand breaks 24h after irradiation. For this endpoint a complete dose-effect-curve was obtained. Therefore, the achieved uncertainty is almost as small as necessary at clinically applied accelerators (3
|
7 |
Dosimetrische Charakterisierung laserbeschleunigter Teilchenstrahlen für in vitro ZellbestrahlungenRichter, Christian 24 May 2013 (has links)
Die Anwendung von Hochintensitätslasern zur Beschleunigung von Teilchen bietet eine Alternative zu klassischen Teilchenbeschleunigern und den von diesen erzeugten Strahlenqualitäten. Nach großen Fortschritten auf dem Gebiet der Laser-Teilchenbeschleunigung wurde die Anwendung der neuen Technologie in der klinischen Ionentherapie vorgeschlagen und diskutiert. Bevor es dazu kommen kann, muss aber neben der Verbesserung der Strahleigenschaften, wie z. B. der Erhöhung der Energie, und der Stabilität der Teilchenbeschleunigung auch eine geeignete physikalische und dosimetrische Charakterisierung entwickelt und die biologische Wirksamkeit dieser neuartigen, ultrakurz gepulsten Strahlenqualität mit extrem hoher Pulsdosisleistung untersucht werden. Dies erfordert eine ganze Reihe von umfangreichen Experimenten der notwendigen Translationskette, angefangen von in vitro Zellbestrahlungen über in vivo Studien bis hin zu präklinischen Untersuchungen und ersten klinischen Studien. Hierzu wurden das Verbundprojekt onCOOPtics gegründet und in einem ersten Schritt in vitro Zellbestrahlungen zur Untersuchung der biologischen Wirksamkeit laserbeschleunigter Teilchen durchgeführt. Dazu wurden Dosis-Effekt-Kurven für humane Tumor- und Normalgewebs-Zelllinien jeweils für mehrere biologische Endpunkte bestimmt.
Begonnen wurde dabei mit der umfangreichen Untersuchung laserbeschleunigter Elektronen am JeTi-Lasersystem in Jena, auf welche zum Zeitpunkt der Verfügbarkeit des DRACO-Lasersystems in Dresden die dosimetrische und strahlenbiologische Charakterisierung laserbeschleunigter Protonen an diesem Lasersystem folgte. Dabei stellte die Entwicklung einer präzisen Dosimetrie zur Bestimmung der applizierten Dosis aufgrund der Strahleigenschaften laserbeschleunigter Teilchen eine große Herausforderung dar. Sie ist aber sowohl im Hinblick auf eine spätere klinische Anwendung als auch für die Durchführung quantitativer strahlenbiologischer Experimente obligatorisch. Diese Arbeit, die im Rahmen des Verbundprojektes entstanden ist, leistet dazu in vielfacher Hinsicht einen wesentlichen Beitrag:
Erstens wurden geeignete Detektoren zur präzisen dosimetrischen Charakterisierung laserbeschleunigter Elektronen und Protonen entwickelt, optimiert und charakterisiert sowie präzise kalibriert. So wurden umfangreiche Studien zu verschiedenen Eigenschaften der auch in der klinischen Dosimetrie angewandten radiochromischen Filme durchgeführt und die Filme entsprechend kalibriert. Dabei wurden neue Erkenntnisse u. a. über deren Energieabhängigkeit gewonnen, die für zahlreiche Anwendungen der Filme von Bedeutung sind. Weiterhin wurden verschiedene Ionisationskammern zur Echtzeit-Strahlmonitorierung von laserbeschleunigten Elektronen und Protonen ausgewählt und dosimetrisch charakterisiert. Zudem wurde der Einsatz von CR-39 Festkörperspurdetektoren zur spektroskopischen Untersuchung laserbeschleunigter Protonen etabliert, indem die Nachverarbeitung und Auslesung der Detektoren charakterisiert und optimiert wurden und außerdem eine retrospektive Filterprozedur der detektierten Krater entwickelt und angewendet wurde. Ferner wurde ein Faraday Cup, der auf die speziellen Eigenschaften derzeitiger laserbeschleunigter Protonen-Strahlenqualitäten abgestimmt ist, entwickelt, charakterisiert und mit drei voneinander unabhängigen Methoden kalibriert. Die radiochromischen Filme und der Faraday Cup konnten daraufhin als Referenzdosimeter sowohl an den konventionellen als auch an den neuartigen Laser-Teilchenbeschleunigern erfolgreich eingesetzt werden.
Zweitens bildete die durchgeführte Echtzeit- und Referenzdosimetrie laserbeschleunigter Elektronen die Grundlage für die weltweit ersten systematischen Zellbestrahlungsexperimente dieser Strahlenqualität. Dabei konnten trotz großer Pulsdosisschwankungen alle Anforderungen bezüglich Dosishomogenität, Strahlstabilität, präziser Deposition einer vorgegebenen Dosis und Unsicherheit der bestimmten applizierten Dosis, die für eine quantitative Auswertung der radiobiologischen Daten notwendig sind, erfüllt werden. Exemplarisch sei die bestimmte Gesamt-Dosisunsicherheit von unter 10% genannt.
Drittens wurden auch laserbeschleunigte Protonen so präzise dosimetrisch monitoriert und charakterisiert, dass auch mit dieser Strahlenqualität quantitative strahlenbiologische Untersuchungen durchgeführt werden konnten. Herausgefordert durch die kurze Reichweite der Protonen im Submillimeterbereich und das breite Energiespektrum dieser Strahlenqualität, gelang dies neben der Charakterisierung und Kalibrierung der einzelnen Detektoren durch die Konzeption und Realisierung eines integrierten Dosimetrie- und Zellbestrahlungssystems (IDOCIS).Weltweit erstmalig wurde eine Echtzeit-Strahlmonitorierung während der Zellbestrahlungen mit laserbeschleunigten Protonen durchgeführt, die sowohl zur kontrollierten Applikation einer vorgegebenen Dosis und zur Strahlüberwachung als auch zusammen mit der durchgeführten Referenzdosimetrie zur hochpräzisen Bestimmung der absolut in den Zellen deponierten Dosis diente. Außerdem trug die parallele und redundante Verwendung zweier voneinander unabhängiger Referenzdosimetrie-Systeme erheblich zur Erreichung einer hohen Zuverlässigkeit und Sicherheit bei. Die Unsicherheit in der bestimmten deponierten Dosis betrug entsprechend für den Endpunkt der residualen DNS-Doppelstrangbrüche 24h nach Bestrahlung, für den eine vollständige Dosis-Effekt-Kurve ermittelt wurde, nur ca. 10%. Die Unsicherheit liegt damit schon fast in dem Bereich, der an klinisch angewandten Beschleunigern zulässig ist (3-5%). Dagegen konnte zu Beginn dieser Arbeit die Dosis laserbeschleunigter Protonen nur mit einer Ungenauigkeit von mehr als 50% abgeschätzt werden.
Viertens wurden die zur Bestimmung der relativen biologischen Wirksamkeit notwendigen Vergleichsbestrahlungen mit konventionellen Elektronen- und Protonenstrahlenquellen und die zur Vergleichbarkeit der konventionellen und laserbeschleunigten Strahlenqualitäten erforderlichen Referenzbestrahlungen mit 200kVp Röntgenröhren im Rahmen dieser Arbeit ebenfalls dosimetrisch optimiert und genau charakterisiert.
Die dosimetrischen Ergebnisse der vorliegenden Arbeit waren eine notwendige Voraussetzung für die im Rahmen anderer Arbeiten vollzogene strahlenbiologische Auswertung der durchgeführten Zellbestrahlungen. Dabei wurde insgesamt kein signifikanter Unterschied in der strahlenbiologischen Wirksamkeit zwischen laserbeschleunigten, ultrakurz gepulsten und konventionellen, kontinuierlichen Strahlenqualitäten weder für Elektronen noch für Protonen festgestellt. Durch die Konsistenz dieser Ergebnisse für beide Teilchenarten und unterschiedliche biologische Endpunkte ist damit die nächste Stufe auf dem translationalen Weg hin zur klinischen Anwendung laserbeschleunigter Teilchen begehbar: Die Durchführung von in vivo Untersuchungen. Dabei muss zwar von einer zweidimensionalen (Zell-Monolayer) auf eine dreidimensionale Zielvolumenbestrahlung (Tumor) übergegangen werden, wobei aber die im Rahmen der vorliegenden Arbeit entwickelten Dosimetrieverfahren und Detektoren auch bei den Tierbestrahlungen angewendet und eingesetzt werden können. / The application of high-intensity lasers for particle acceleration provides an alternative to conventional particle accelerators and also alternative beam qualities. Soon after the recent progress in the field of laser particle acceleration, its application in clinical ion therapy was proposed and discussed widely. Besides the improvement of the beam properties (increasing of beam energy and stability of particle acceleration process, e. g.) a capable physical and dosimetric characterization has to be developed before the technology can be applied in cancer therapy. The same is true for investigation of the biological effectiveness of this new, ultra-short pulsed beam quality with extremely high pulse dose rate. Hence, the whole translational chain, beginning from in vitro cell irradiation over in vivo studies to the point of preclinical investigations and first clinical trials, is necessary. For this reason, in a first step the joint research project onCOOPtics was founded and in vitro cell irradiation experiments were performed to study the biological effectiveness of laser accelerated particles. Therefore, dose-effect-curves for tumor and normal tissue cell lines were determined for different biological endpoints.
Starting with extensive experiments with laser accelerated electrons at the JeTi laser system in Jena, the investigations were continued with dosimetric and radiobiological characterization of laser accelerated protons at the DRACO laser system in Dresden shortly after the DRACO laser started its operation. In this process, the development of a precise dosimetry for determination of the applied dose posed a great challenge due to the beam properties of laser accelerated particles. However, this is a crucial and compulsive requirement for both, the future clinical application and also for the realization of quantitative radiobiological experiments. Compiled in the onCOOPtics framework, this paper contributed to this task in multiple key aspects:
Firstly, capable detectors for precise dosimetric characterization of laser accelerated electrons and protons were developed, optimized and characterized as well as precisely calibrated. Thus, comprehensive investigations were performed studying different properties of radiochromic films which are also applied in clinical dosimetry. In addition, these films were precisely calibrated for different beam qualities. Thereby, new findings of the energy dependence of radiochromic films were obtained which are of importance for numerous applications of these films. Moreover, different ionization chambers for real-time beam monitoring of laser accelerated electrons and protons were selected and characterized. Furthermore, the application of CR-39 solid state track detectors was established for spectroscopic investigations of laser accelerated protons by characterizing and optimizing the postirradiation processing and the readout of the detectors. Also a retrospective filter procedure of the detected tracks was developed and applied. Moreover, a Faraday Cup adjusted to the special properties of current laser accelerated proton beam qualities was developed, characterized and precisely calibrated by means of three independent calibration methods. Finally, the radiochromic films and the Faraday Cup could be used as reference dosimeters both for conventional accelerators and also for novel laser particle accelerators.
Secondly, the performed real-time and reference dosimetry of laser accelerated electrons was the prerequisite of the first systematic cell irradiation experiments with this beam quality worldwide. Despite high pulse dose fluctuations, all requirements were satisfied concerning dose homogeneity, beam stability, precise deposition of a prescribed dose and uncertainty of the applied dose, that are all necessary for a quantitative evaluation of the radiobiological data. Exemplary, a total dose uncertainty below 10% was reached.
Thirdly, laser accelerated protons were precisely monitored and characterized allowing quantitative, well-founded radiobiological investigations with this beam quality. This task was very much challenged by the short range of the protons in the sub-millimeter range and the broad energy spectrum of the beam quality. It was succeeded not only due to the comprehensive characterization and precise calibration of the different detectors but also due to the conception and realization of an integrated dosimetry and cell irradiation system (IDOCIS). For the first time, a real-time beam monitoring during cell irradiation with laser accelerated protons was performed. This real-time monitoring was not only used for controlled application of the prescribed dose and beam monitoring and also – together with the performed reference dosimetry – for precise determination of the deposited dose at cell location. In addition, high reliability and safety was considerably ensured by using two independent reference dosimetry systems in parallel. Hence, the determined uncertainty of the deposited dose was only about 10% for the biological endpoint of the residual DNA double strand breaks 24h after irradiation. For this endpoint a complete dose-effect-curve was obtained. Therefore, the achieved uncertainty is almost as small as necessary at clinically applied accelerators (3
|
8 |
Rotating jet phenomena in Active Galactic Nuclei / Rotierende Jet-Phänomene in Aktiven Galaktischen KernenRieger, Frank Michael 01 February 2001 (has links)
No description available.
|
9 |
Entwicklung zweier Spektrometer für laserbeschleunigte ProtonenstrahlenRichter, Tom 10 October 2013 (has links) (PDF)
Durch die Fokussierung eines ultrakurzen und hochintensiven Laserpulses auf ein Festkörpertarget können Pulse von Protonen und anderen positiv geladenen Ionen mit Teilchenenergien von einigen MeV pro Nukleon erzeugt werden. Die Charakterisierung dieser Teilchenstrahlung erfordert die Identifizierung der Ionenspezies und die Bestimmung ihrer spektralen Verteilung möglichst nach jedem Puls.
Im Rahmen dieser Diplomarbeit wurden zwei Spektrometer entwickelt und am DRACO-Lasersystem des Forschungszentrums Dresden implementiert. Neben der Inbetriebnahme eines Thomson-Spektrometers mit einer Mikrokanalplatte und einem Fluoreszenzschirm als Auslese erfolgte die Entwicklung eines Flugzeitspektrometers. Die Verwendung einer Mikrokanalplatte mit nur 180ps Anstiegszeit als Signalverstärker sorgt darin für eine verbesserte Energieauflösung und einen flexibleren Einsatz im Experimentierbetrieb. Ein dem Flugzeitsignal überlagertes Störsignal, welches durch die Einstreuungen eines elektromagnetischen Impulses in den Aufbau verursacht wurde, konnte erfolgreich durch die Anwendung verschiedener Filter unterdrückt werden.
Als Ergebnis dieser Arbeit steht eine anwendungsbereite Diagnostik für laserbeschleunigte Protonen und Ionen zur Verfügung. / By focusing an ultra-short high-intensity laser pulse on a solid target, pulses of protons and other positive charged ions with energies of several MeV per nucleon are generated. It is necessary to identify the species of those particles and obtain their energy spectra in a single-shot regime.
Within this diploma thesis two spectrometers have been developed and implemented in the DRACO-laboratory of the Forschungszentrum Dresden. Besides a Thomson spectrometer with read-out via microchannel plate and phosphor screen, a time-of-flight spectrometer was developed. The usage of a microchannel plate with 180ps rise time as a signal amplifier leads therein to a better energy resolution and a more flexible handling in experimental operation. A noise signal generated by stray pick-up of an electromagnetic pulse and superimposing the time-of-flight signal was considerably reduced by the application of different filters.
As a result of this work a ready-to-use diagnostic for laser accelerated protons and ions is available.
|
10 |
Entwicklung zweier Spektrometer für laserbeschleunigte ProtonenstrahlenRichter, Tom 08 April 2009 (has links)
Durch die Fokussierung eines ultrakurzen und hochintensiven Laserpulses auf ein Festkörpertarget können Pulse von Protonen und anderen positiv geladenen Ionen mit Teilchenenergien von einigen MeV pro Nukleon erzeugt werden. Die Charakterisierung dieser Teilchenstrahlung erfordert die Identifizierung der Ionenspezies und die Bestimmung ihrer spektralen Verteilung möglichst nach jedem Puls.
Im Rahmen dieser Diplomarbeit wurden zwei Spektrometer entwickelt und am DRACO-Lasersystem des Forschungszentrums Dresden implementiert. Neben der Inbetriebnahme eines Thomson-Spektrometers mit einer Mikrokanalplatte und einem Fluoreszenzschirm als Auslese erfolgte die Entwicklung eines Flugzeitspektrometers. Die Verwendung einer Mikrokanalplatte mit nur 180ps Anstiegszeit als Signalverstärker sorgt darin für eine verbesserte Energieauflösung und einen flexibleren Einsatz im Experimentierbetrieb. Ein dem Flugzeitsignal überlagertes Störsignal, welches durch die Einstreuungen eines elektromagnetischen Impulses in den Aufbau verursacht wurde, konnte erfolgreich durch die Anwendung verschiedener Filter unterdrückt werden.
Als Ergebnis dieser Arbeit steht eine anwendungsbereite Diagnostik für laserbeschleunigte Protonen und Ionen zur Verfügung. / By focusing an ultra-short high-intensity laser pulse on a solid target, pulses of protons and other positive charged ions with energies of several MeV per nucleon are generated. It is necessary to identify the species of those particles and obtain their energy spectra in a single-shot regime.
Within this diploma thesis two spectrometers have been developed and implemented in the DRACO-laboratory of the Forschungszentrum Dresden. Besides a Thomson spectrometer with read-out via microchannel plate and phosphor screen, a time-of-flight spectrometer was developed. The usage of a microchannel plate with 180ps rise time as a signal amplifier leads therein to a better energy resolution and a more flexible handling in experimental operation. A noise signal generated by stray pick-up of an electromagnetic pulse and superimposing the time-of-flight signal was considerably reduced by the application of different filters.
As a result of this work a ready-to-use diagnostic for laser accelerated protons and ions is available.
|
Page generated in 0.0732 seconds