Spelling suggestions: "subject:"template reactions"" "subject:"contemplated reactions""
1 |
Achieving High Catalytic Efficiency in Nucleic Acid-Templated Reactions by a Loss-of-Affinity PrincipleGluhacevic von Krüchten, Dino 30 October 2023 (has links)
Die Entwicklung von enzymfreien, isothermen Nachweisverfahren für Nukleinsäuren, die mit der PCR konkurrieren können, ist seit langem ein Ziel. Eine potenzielle Strategie besteht darin, Nukleinsäure-templierte Reaktionen zu verwenden, bei denen das Templat (Analyt) als Katalysator fungiert und das Signal verstärkt. Die derzeitig verwendeten Strategien, wie Ligations- oder Transferreaktionen, sind jedoch in ihrer Empfindlichkeit aufgrund des Effekts der Produktinhibierung begrenzt. Um dies zu überwinden, müssen die Reaktanten nicht nur sequenzspezifisch an die DNA oder RNA binden, sondern die Produkte müssen sich auch von der DNA oder RNA wieder lösen können. Diese Arbeit stellt ein neues Paradigma für Nukleinsäure templierte Reaktionen vor: Das Loss-of-Affinity Prinzip. In diesem Prinzip werden Produkte generiert, die eine geringere Affinität zum Templat aufweisen als die Reaktanten. Dadurch wird die Produktinhibierung verhindert. Im ersten Teil dieser Arbeit wurde das Loss-of-Affinity Prinzip mit triplexbildenden, spaltbaren bis-PNA Sonden untersucht. Diese erfuhren eine C-O-Bindungsspaltung, ausgelöst durch die katalytische Photoreduktion eines Rutheniumkomplexes. Nach mehreren Optimierungsrunden zeigte eine 10-mer bis-PNA Sonde eine beeindruckende katalytische Effizienz. Diese Ergebnisse zeigen, dass das Loss-of-Affinity Prinzip zur Überwindung der Produktinhibierung genutzt werden kann. Die verwendeten bis-PNAs zeigten jedoch eine stark unspezifische Bindung. Im zweiten Teil dieser Arbeit wurden die bis-PNA Sonden gegen PNA- und GPNA-Spermin Sonden ausgetauscht, um das Problem der unspezifischen Bindung zu überwinden. Die PNA- und GPNA Spermin Sonden zeigten die wahrscheinlich effizientesten, bisher bekannten Nukleinsäure templierten Reaktionen, welchee die meisten natürlichen Enzyme übertrafen. Darüber hinaus zeigten sie eine ausgezeichnete Sequenzspezifität. / Developing enzyme-free isothermal detection methods of nucleic acids that can challenge PCR has been a long-standing goal. One potential strategy revolves around nucleic acid-templated reactions, in which the template (analyte) can act as a catalyst and amplify the signal. However, current strategies such as ligation reactions or functional group interconversions are plagued by product inhibition, which limits the sensitivity. To overcome this, the reactants must not only bind to DNA or RNA in a sequence-specific manner, but the products must also be able to detach from the DNA or RNA. This work introduces a new paradigm to nucleic acid-templated reactions, the loss-of-affinity principle, which yields products that have a lower template affinity than the reactants. This prevents product inhibition. In the first part of this work, the loss-of-affinity principle was explored with triplex-forming immolative bis-PNA probes that underwent a C-O bond cleavage upon catalytic photoreduction using a ruthenium complex. After several rounds of optimization, a 10-mer bis-PNA demonstrated an impressive catalytic efficiency. These results demonstrate that the loss-of-affinity principle can be used to overcome product inhibition. However, the bis-PNAs demonstrated highly non-specific binding. In the second part of this work, the bis-PNAs were replaced with PNA- and GPNA-spermine probes to address the issue of non-specific binding. The PNA- and GPNA-spermine probes exhibited probably the most efficient nucleic acid-templated reactions to date, outperforming most natural enzymes. In addition, they demonstrated excellent sequence specificity.
|
2 |
Quantum Dot-basierte FRET Systeme zur Templat-vermittelten Detektion von RNAZavoiura, Oleksandr 13 December 2018 (has links)
Die Detektion von Nukleinsäuren ist eine der am häufigsten verwendeten Methoden zur Erkennung von viralen und bakteriellen Spezies in biologischen Proben. Oligonukleotid-vermittelte Reaktionen (OVR), die die Zielsequenz als Katalysator der chemischen Reaktion zwischen reaktiven Sonden verwenden, bieten gegenüber den enzymatischen Methoden viele Vorteile, wie z.B. Simplizität und Kosteneffizienz. Normalerweise besitzt das Produkt der OVR deutliche fluoreszierende Eigenschaften, die durch Fluoreszenzspektroskopie gemessen werden können. Die Haupteinschränkung solcher Systeme ist die nur moderate Helligkeit von organischen Farbstoffen, die meistens zur Markierung von reaktiven Sonden genutzt werden. Um dieses Problem zu lösen, sind Fluorophore mit höherer Helligkeit erforderlich.
Die vorliegende Arbeit beschreibt die Entwicklung einer Methode zur Detektion von RNA durch Templat-vermittelten Transfer des Fluorophors auf den Quantum Dot (QD). Das System besteht aus zwei reaktiven Peptide Nucleic Acid (PNA)-basierten Antisense-Sonden. Die Label Akzeptor PNA (LAPNA) Sonde ist auf dem QD immobilisiert und enthält eine Cysteineinheit am N-terminus. Die Label Donor PNA (LDPNA) Sonde trägt eine Cy5-Einheit, die als Thioester gebunden ist. Durch die benachbarte Hybridisierung der Sonden am RNA-Templat nimmt die effektive Molarität der reaktiven Gruppen zu, und führt somit durch das Prinzip von Native Chemical Ligation zum Transfer des Cy5 auf den QD. Dies resultiert in Förster−Resonanzenergietransfer (FRET) zwischen dem QD und den Cy5-Molekülen, der durch die Löschung der Emission des QDs sowie die Verstärkung der Fluoreszenz des Cy5 beobachtet werden kann. Die Verwendung von sehr hellen QDs als FRET-Donor ermöglicht die Umsetzung von Sonden bei geringen Konzentrationen und ermöglicht die Erkennung von RNA mit Nachweisgrenzen im Bereich von weniger pikomolar. / Detection of nucleic acids is one of the most reliable methods for the identification of bacterial and viral species in biological samples. Oligonucleotide-templated reactions (OTRs) that exploit an RNA or DNA target to catalyze a chemical reaction hold great promise for the development of enzyme-free and low-cost detection schemes. Commonly, these strategies rely on organic dyes and are designed so that the product of OTR exhibits distinct fluorogenic properties. The main constraint of such schemes is the moderate brightness of organic fluorophores, which limits the read-out when the probes are used at low concentrations. To tackle this obstacle, significantly brighter fluorophores are needed.
This work describes the development of an RNA detection scheme that relies on target-templated fluorophore transfer onto a semiconductor quantum dot (QD). The approach uses two reactive peptide nucleic acid (PNA) antisense probes. Label acceptor peptide nucleic acid (LAPNA) probe is immobilized on a QD and bears a cysteine at the N-terminus; label donor peptide nucleic acid (LDPNA) probe is equipped with a Cy5 dye, attached as a thioester. The adjacent annealing of these recognition elements following binding to target RNA triggers the transfer of Cy5 onto a QD in a native chemical ligation manner. This leads to a detectable fluorescence signal brought about by FRET from QD to the Cy5. The use of unprecedentedly bright QDs that can act as FRET donors for several Cy5 functionalities allows application of probes at very low concentrations (pM range) and achieves enhanced sensitivity of target-templated RNA detection. The method enabled RNA detection in the low pM range using a conventional microtiter plate reader.
|
Page generated in 0.0863 seconds