• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Dot-basierte FRET Systeme zur Templat-vermittelten Detektion von RNA

Zavoiura, Oleksandr 13 December 2018 (has links)
Die Detektion von Nukleinsäuren ist eine der am häufigsten verwendeten Methoden zur Erkennung von viralen und bakteriellen Spezies in biologischen Proben. Oligonukleotid-vermittelte Reaktionen (OVR), die die Zielsequenz als Katalysator der chemischen Reaktion zwischen reaktiven Sonden verwenden, bieten gegenüber den enzymatischen Methoden viele Vorteile, wie z.B. Simplizität und Kosteneffizienz. Normalerweise besitzt das Produkt der OVR deutliche fluoreszierende Eigenschaften, die durch Fluoreszenzspektroskopie gemessen werden können. Die Haupteinschränkung solcher Systeme ist die nur moderate Helligkeit von organischen Farbstoffen, die meistens zur Markierung von reaktiven Sonden genutzt werden. Um dieses Problem zu lösen, sind Fluorophore mit höherer Helligkeit erforderlich. Die vorliegende Arbeit beschreibt die Entwicklung einer Methode zur Detektion von RNA durch Templat-vermittelten Transfer des Fluorophors auf den Quantum Dot (QD). Das System besteht aus zwei reaktiven Peptide Nucleic Acid (PNA)-basierten Antisense-Sonden. Die Label Akzeptor PNA (LAPNA) Sonde ist auf dem QD immobilisiert und enthält eine Cysteineinheit am N-terminus. Die Label Donor PNA (LDPNA) Sonde trägt eine Cy5-Einheit, die als Thioester gebunden ist. Durch die benachbarte Hybridisierung der Sonden am RNA-Templat nimmt die effektive Molarität der reaktiven Gruppen zu, und führt somit durch das Prinzip von Native Chemical Ligation zum Transfer des Cy5 auf den QD. Dies resultiert in Förster−Resonanzenergietransfer (FRET) zwischen dem QD und den Cy5-Molekülen, der durch die Löschung der Emission des QDs sowie die Verstärkung der Fluoreszenz des Cy5 beobachtet werden kann. Die Verwendung von sehr hellen QDs als FRET-Donor ermöglicht die Umsetzung von Sonden bei geringen Konzentrationen und ermöglicht die Erkennung von RNA mit Nachweisgrenzen im Bereich von weniger pikomolar. / Detection of nucleic acids is one of the most reliable methods for the identification of bacterial and viral species in biological samples. Oligonucleotide-templated reactions (OTRs) that exploit an RNA or DNA target to catalyze a chemical reaction hold great promise for the development of enzyme-free and low-cost detection schemes. Commonly, these strategies rely on organic dyes and are designed so that the product of OTR exhibits distinct fluorogenic properties. The main constraint of such schemes is the moderate brightness of organic fluorophores, which limits the read-out when the probes are used at low concentrations. To tackle this obstacle, significantly brighter fluorophores are needed. This work describes the development of an RNA detection scheme that relies on target-templated fluorophore transfer onto a semiconductor quantum dot (QD). The approach uses two reactive peptide nucleic acid (PNA) antisense probes. Label acceptor peptide nucleic acid (LAPNA) probe is immobilized on a QD and bears a cysteine at the N-terminus; label donor peptide nucleic acid (LDPNA) probe is equipped with a Cy5 dye, attached as a thioester. The adjacent annealing of these recognition elements following binding to target RNA triggers the transfer of Cy5 onto a QD in a native chemical ligation manner. This leads to a detectable fluorescence signal brought about by FRET from QD to the Cy5. The use of unprecedentedly bright QDs that can act as FRET donors for several Cy5 functionalities allows application of probes at very low concentrations (pM range) and achieves enhanced sensitivity of target-templated RNA detection. The method enabled RNA detection in the low pM range using a conventional microtiter plate reader.

Page generated in 0.085 seconds