• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing Conventional, Spatial, and Temporal Data Warehouses: Concepts and Methodological Framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems. In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them. On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process. To ensure the correctness of the proposed conceptual models, i.e., with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.
2

Análise de desempenho de consultas OLAP espaçotemporais em função da ordem de processamento dos predicados convencional, espacial e temporal

Joaquim Neto, Cesar 08 March 2016 (has links)
Submitted by Daniele Amaral (daniee_ni@hotmail.com) on 2016-10-07T20:05:05Z No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:30:58Z (GMT) No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:31:04Z (GMT) No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5) / Made available in DSpace on 2016-10-20T19:31:09Z (GMT). No. of bitstreams: 1 DissCJN.pdf: 5948964 bytes, checksum: e7e719e26b50a85697e7934bde411070 (MD5) Previous issue date: 2016-03-08 / Não recebi financiamento / By providing ever-growing processing capabilities, many database technologies have been becoming important support tools to enterprises and institutions. The need to include (and control) new data types to the existing database technologies has brought also new challenges and research areas, arising the spatial, temporal, and spatiotemporal databases. Besides that, new analytical capabilities were required facilitating the birth of the data warehouse technology and, once more, the need to include spatial or temporal data (or both) to it, thus originating the spatial, temporal, and spatio-temporal data warehouses. The queries used in each database type had also evolved, culminating in the STOLAP (Spatio Temporal OLAP) queries, which are composed of predicates dealing with conventional, spatial, and temporal data with the possibility of having their execution aided by specialized index structures. This work’s intention is to investigate how the execution of each predicate affects the performance of STOLAP queries by varying the used indexes, their execution order and the query’s selectivity. Bitmap Join Indexes will help in conventional predicate’s execution and in some portions of the temporal processing, which will also count with the use of SQL queries for some of the alternatives used in this research. The SB-index and HSB-index will aid the spatial processing while the STB-index will be used to process temporal and spatial predicates together. The expected result is an analysis of the best predicate order while running the queries also considering their selectivity. Another contribution of this work is the evolution of the HSB-index to a hierarchized version called HSTB-index, which should complement the execution options. / Por proverem uma capacidade de processamento de dados cada vez maior, várias tecnologias de bancos de dados têm se tornado importantes ferramentas de apoio a empresas e instituições. A necessidade de se incluir e controlar novos tipos de dados aos bancos de dados já existentes fizeram também surgir novos desafios e novas linhas de pesquisa, como é o caso dos bancos de dados espaciais, temporais e espaçotemporais. Além disso, novas capacidades analíticas foram se fazendo necessárias culminando com o surgimento dos data warehouses e, mais uma vez, com a necessidade de se incluir dados espaciais e temporais (ou ambos) surgindo os data warehouses espaciais, temporais e espaço-temporais. As consultas relacionadas a cada tipo de banco de dados também evoluíram culminando com as consultas STOLAP (Spatio-Temporal OLAP) que são compostas basicamente por predicados envolvendo dados convencionais, espaciais e temporais e cujo processamento pode ser auxiliado por estruturas de indexação especializadas. Este trabalho pretende investigar como a execução de cada um dos tipos de predicados afeta o desempenho de consultas STOLAP variando-se os índices utilizados, a ordem de execução dos predicados e a seletividade das consultas. Índices Bitmap de Junção auxiliarão na execução dos predicados convencionais e de algumas partes dos predicados temporais que também contarão com o auxílio de consultas SQL, enquanto os índices SB-index e HSB-index serão utilizados para auxiliar na execução dos predicados espaciais das consultas. O STB-index também será utilizado nas comparações e envolve ambos os predicados espacial e temporal. Espera-se obter uma análise das melhores opções de combinação de execução dos predicados em consultas STOLAP tendo em vista também a seletividade das consultas. Outra contribuição deste trabalho é a evolução do HSB-index para uma versão hierarquizada chamada HSTB-index e que servirá para complementar as opções de processamento de consultas STOLAP.
3

Designing conventional, spatial, and temporal data warehouses: concepts and methodological framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. <p><p>A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. <p><p>DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. <p><p>Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems.<p><p>In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them.<p><p>On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. <p><p>However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. <p><p>With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. <p><p>Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. <p>Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. <p><p>In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. <p><p>Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. <p><p>In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process.<p><p>To ensure the correctness of the proposed conceptual models, i.e. with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0504 seconds