• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vers des cubes matriciels supportant l’analyse spatiale à la volée dans un contexte décisionnel

Plante, Mathieu 20 April 2018 (has links)
Depuis l’avènement du SOLAP, la problématique consistant à produire des analyses spatiales à la volée demeure entière. Les travaux précédents se sont tournés vers l’analyse visuelle et le calcul préalable afin d’obtenir des résultats en moins de 10 secondes. L’intégration des données matricielles dans les cubes SOLAP possède un potentiel inexploré pour le traitement à la volée des analyses spatiales. Cette recherche vise à explorer les avantages et les considérations à exploiter les cubes matriciels afin de produire des analyses spatiales à la volée dans un contexte décisionnel. Elle contribue à l’évolution du cadre théorique de l’intégration des données matricielles dans les cubes en ajoutant notamment la notion de couverture matricielle au cube afin de mieux supporter les analyses spatiales matricielles. Elle identifie des causes de la consommation excessive de ressources pour le traitement de ces analyses et propose des pistes d’optimisation basées sur l’exploitation des dimensions matricielles géométriques.
2

Semantic analysis in web usage mining

Norguet, Jean-Pierre 20 March 2006 (has links)
With the emergence of the Internet and of the World Wide Web, the Web site has become a key communication channel in organizations. To satisfy the objectives of the Web site and of its target audience, adapting the Web site content to the users' expectations has become a major concern. In this context, Web usage mining, a relatively new research area, and Web analytics, a part of Web usage mining that has most emerged in the corporate world, offer many Web communication analysis techniques. These techniques include prediction of the user's behaviour within the site, comparison between expected and actual Web site usage, adjustment of the Web site with respect to the users' interests, and mining and analyzing Web usage data to discover interesting metrics and usage patterns. However, Web usage mining and Web analytics suffer from significant drawbacks when it comes to support the decision-making process at the higher levels in the organization.<p><p>Indeed, according to organizations theory, the higher levels in the organizations need summarized and conceptual information to take fast, high-level, and effective decisions. For Web sites, these levels include the organization managers and the Web site chief editors. At these levels, the results produced by Web analytics tools are mostly useless. Indeed, most of these results target Web designers and Web developers. Summary reports like the number of visitors and the number of page views can be of some interest to the organization manager but these results are poor. Finally, page-group and directory hits give the Web site chief editor conceptual results, but these are limited by several problems like page synonymy (several pages contain the same topic), page polysemy (a page contains several topics), page temporality, and page volatility.<p><p>Web usage mining research projects on their part have mostly left aside Web analytics and its limitations and have focused on other research paths. Examples of these paths are usage pattern analysis, personalization, system improvement, site structure modification, marketing business intelligence, and usage characterization. A potential contribution to Web analytics can be found in research about reverse clustering analysis, a technique based on self-organizing feature maps. This technique integrates Web usage mining and Web content mining in order to rank the Web site pages according to an original popularity score. However, the algorithm is not scalable and does not answer the page-polysemy, page-synonymy, page-temporality, and page-volatility problems. As a consequence, these approaches fail at delivering summarized and conceptual results. <p><p>An interesting attempt to obtain such results has been the Information Scent algorithm, which produces a list of term vectors representing the visitors' needs. These vectors provide a semantic representation of the visitors' needs and can be easily interpreted. Unfortunately, the results suffer from term polysemy and term synonymy, are visit-centric rather than site-centric, and are not scalable to produce. Finally, according to a recent survey, no Web usage mining research project has proposed a satisfying solution to provide site-wide summarized and conceptual audience metrics. <p><p>In this dissertation, we present our solution to answer the need for summarized and conceptual audience metrics in Web analytics. We first described several methods for mining the Web pages output by Web servers. These methods include content journaling, script parsing, server monitoring, network monitoring, and client-side mining. These techniques can be used alone or in combination to mine the Web pages output by any Web site. Then, the occurrences of taxonomy terms in these pages can be aggregated to provide concept-based audience metrics. To evaluate the results, we implement a prototype and run a number of test cases with real Web sites. <p><p>According to the first experiments with our prototype and SQL Server OLAP Analysis Service, concept-based metrics prove extremely summarized and much more intuitive than page-based metrics. As a consequence, concept-based metrics can be exploited at higher levels in the organization. For example, organization managers can redefine the organization strategy according to the visitors' interests. Concept-based metrics also give an intuitive view of the messages delivered through the Web site and allow to adapt the Web site communication to the organization objectives. The Web site chief editor on his part can interpret the metrics to redefine the publishing orders and redefine the sub-editors' writing tasks. As decisions at higher levels in the organization should be more effective, concept-based metrics should significantly contribute to Web usage mining and Web analytics. <p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
3

Designing conventional, spatial, and temporal data warehouses: concepts and methodological framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. <p><p>A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. <p><p>DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. <p><p>Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems.<p><p>In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them.<p><p>On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. <p><p>However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. <p><p>With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. <p><p>Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. <p>Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. <p><p>In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. <p><p>Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. <p><p>In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process.<p><p>To ensure the correctness of the proposed conceptual models, i.e. with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0516 seconds