• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing Conventional, Spatial, and Temporal Data Warehouses: Concepts and Methodological Framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems. In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them. On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process. To ensure the correctness of the proposed conceptual models, i.e., with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.
2

Mise en place d'un Système d'Information Décisionnel pour le suivi et la prévention des épidémies / Implementation of decision information system for monitoring and preventing epidemics

Younsi, Fatima-Zohra 17 February 2016 (has links)
Les maladies infectieuses représentent aujourd’hui un problème majeur de santé publique. Devant l’augmentation des résistances bactériennes, l’émergence de nouveaux pathogènes et la propagation rapide de l’épidémie, le suivi et la surveillance de la transmission de la maladie devient particulièrement importants. Face à une telle menace, la société doit se préparer à l'avance pour réagir rapidement et efficacement si une telle épidémie est déclarée. Cela nécessite une mise en place des dispositifs de suivi et de prévention. Dans ce contexte, nous nous intéressons, dans le présent travail, à l’élaboration d’un Système d’Information Décisionnel Spatio-temporel pour le suivi et la surveillance du phénomène de propagation de l’épidémie de la grippe saisonnière au sein de la population de la ville d’Oran (Algérie). L’objectif de ce système est double : il consiste, d’une part, à comprendre comment l’épidémie se propage par l’utilisation du réseau social Small World (SW) et du modèle à compartiments d’épidémie SEIR (Susceptible-Exposed-Infected-Removed), et d’autre part, à stocker dans un entrepôt les données multiples tout en les analysant par un outil d’analyse en ligne de donnée Spatiale dit SOLAP (Spatial On-Line Analytical Processing). / Today, infectious diseases represent a major public health problem. With the increase of bacterial resistance, the emergence of new pathogens and the rapid spread of epidemic, monitoring and surveillance of disease transmission becomes important. In the face of such a threat, the society must prepare in advance to respond quickly and effectively if an outbreak is declared. This requires setting up monitoring mechanisms and prevention.In this context, we are particularly interested by development a Spatiotemporal decision support system for monitoring and preventing the phenomenon of seasonal influenza epidemic spread in the population of Oran (city at Algeria).The objective of this system is twofold: on one hand, to understand how epidemic is spreading through the social network by using SEIR (Susceptible-Exposed-Infected-Removed) compartmental model within Small World network, and on the other hand, to store multiple data in data warehouse and analyzing it by a specific online analysis tool Spatial OLAP (Spatial on-line Analytical Processing).
3

Intégration et optimisation des grilles régulières de points dans une architecture SOLAP relationnelle / Integration and optimization of regular grids of points analysis in the relational SOLAP architecture

Zaamoune, Mehdi 08 January 2015 (has links)
Les champs continus sont des types de représentations spatiales utilisées pour modéliser des phénomènes tels que la température, la pollution ou l’altitude. Ils sont définis selon une fonction de mapping f qui affecte une valeur du phénomène étudié à chaque localisation p du domaine d’étude. Par ailleurs, la représentation des champs continus à différentes échelles ou résolutions est souvent essentielle pour une analyse spatiale efficace. L’avantage des champs continus réside dans le niveau de détails généré par la continuité, ainsi que la qualité de l’analyse spatiale fournie par la multi-résolution. L’inconvénient de ce type de représentations dans l’analyse spatio-multidimensionnelle est le coût des performances d’analyse et de stockage. Par ailleurs, les entrepôts de données spatiaux et les systèmes OLAP spatiaux (EDS et SOLAP) sont des systèmes d’aide à la décision qui permettent l’analyse spatio-multidimensionnelle de grands volumes de données spatiales et non spatiales. L’analyse des champs continus dans l’architecture SOLAP représente un défi de recherche intéressant. Différents travaux se sont intéressés à l’intégration de ce type de représentations dans le système SOLAP. Cependant, celle-ci est toujours au stade embryonnaire. Cette thèse s’intéresse à l’intégration des champs continus incomplets représentés par une grille régulière de points dans l’analyse spatio-multidimensionnelle. Cette intégration dans le système SOLAP implique que l’analyse des champs continus doit supporter : (i) les opérateurs OLAP classiques, (ii) la vue continue des données spatiales, (iii) les opérateurs spatiaux (slice spatial) et (iv) l’interrogation des données à différentes résolutions prédéfinies. Dans cette thèse nous proposons différentes approches pour l’analyse des champs continus dans le SOLAP à différents niveaux de l’architecture relationnelle, de la modélisation conceptuelle à l’optimisation des performances de calcul. Nous proposons un modèle logique FISS qui permet d’optimiser les performances d’analyse à multi-résolution en se basant sur des méthodes d’interpolation. Puis, nous exposons une méthodologie basée sur la méthode d’échantillonnage du Clustering, qui permet d’optimiser les opérations d’agrégation des grilles régulières de points dans l’architecture SOLAP relationnelle en effectuant une estimation des résultats. / Continuous fields are types of spatial representations used to model phenomena such as temperature, pollution or altitude. They are defined according to a mapping function f that assigns a value of the studied phenomenon to each p location of the studied area. Moreover, the representation of continuous fields at different scales or resolutions is often essential for effective spatial analysis. The advantage of continuous fields is the level of details generated by the continuity of the spatial data, and the quality of the spatial analysis provided by the multi-resolution. The downside of this type of spatial representations in the multidimensionnal analysis is the high cost of analysis and storage performances. Moreover, spatial data warehouses and spatial OLAP systems (EDS and SOLAP) are decision support systems that enable multidimensional spatial analysis of large volumes of spatial and non-spatial data. The analysis of continuous fields in SOLAP architecture represents an interesting research challenge. Various studies have focused on the integration of such representations in SOLAP system. However, this integration still at an early stage. Thus, this thesis focuses on the integration of incomplete continuous fields represented by a regular grid of points in the spatio-multidimensional analysis. This integration in the SOLAP system involves that the analysis of continuous fields must support:(i) conventional OLAP operators, (ii) Continuous spatial data, (iii) spatial operators (spatial slice), and (iv) querying data at different predefined levels of resolutions. In this thesis we propose differents approaches for the analysis of continuous fields in SOLAP system at different levels of the relational architecture (from the conceptual modeling to the optimization of computing performance). We propose a logical model FISS to optimize the performances of the multi-resolution analysis, based on interpolation methods. Then, we present a new methodology based on the Clustering sampling method, to optimize aggregation operations on regular grids of points in the relational SOLAP architecture.
4

Designing conventional, spatial, and temporal data warehouses: concepts and methodological framework

Malinowski Gajda, Elzbieta 02 October 2006 (has links)
Decision support systems are interactive, computer-based information systems that provide data and analysis tools in order to better assist managers on different levels of organization in the process of decision making. Data warehouses (DWs) have been developed and deployed as an integral part of decision support systems. <p><p>A data warehouse is a database that allows to store high volume of historical data required for analytical purposes. This data is extracted from operational databases, transformed into a coherent whole, and loaded into a DW during the extraction-transformation-loading (ETL) process. <p><p>DW data can be dynamically manipulated using on-line analytical processing (OLAP) systems. DW and OLAP systems rely on a multidimensional model that includes measures, dimensions, and hierarchies. Measures are usually numeric additive values that are used for quantitative evaluation of different aspects about organization. Dimensions provide different analysis perspectives while hierarchies allow to analyze measures on different levels of detail. <p><p>Nevertheless, currently, designers as well as users find difficult to specify multidimensional elements required for analysis. One reason for that is the lack of conceptual models for DW and OLAP system design, which would allow to express data requirements on an abstract level without considering implementation details. Another problem is that many kinds of complex hierarchies arising in real-world situations are not addressed by current DW and OLAP systems.<p><p>In order to help designers to build conceptual models for decision-support systems and to help users in better understanding the data to be analyzed, in this thesis we propose the MultiDimER model - a conceptual model used for representing multidimensional data for DW and OLAP applications. Our model is mainly based on the existing ER constructs, for example, entity types, attributes, relationship types with their usual semantics, allowing to represent the common concepts of dimensions, hierarchies, and measures. It also includes a conceptual classification of different kinds of hierarchies existing in real-world situations and proposes graphical notations for them.<p><p>On the other hand, currently users of DW and OLAP systems demand also the inclusion of spatial data, visualization of which allows to reveal patterns that are difficult to discover otherwise. The advantage of using spatial data in the analysis process is widely recognized since it allows to reveal patterns that are difficult to discover otherwise. <p><p>However, although DWs typically include a spatial or a location dimension, this dimension is usually represented in an alphanumeric format. Furthermore, there is still a lack of a systematic study that analyze the inclusion as well as the management of hierarchies and measures that are represented using spatial data. <p><p>With the aim of satisfying the growing requirements of decision-making users, we extend the MultiDimER model by allowing to include spatial data in the different elements composing the multidimensional model. The novelty of our contribution lays in the fact that a multidimensional model is seldom used for representing spatial data. To succeed with our proposal, we applied the research achievements in the field of spatial databases to the specific features of a multidimensional model. The spatial extension of a multidimensional model raises several issues, to which we refer in this thesis, such as the influence of different topological relationships between spatial objects forming a hierarchy on the procedures required for measure aggregations, aggregations of spatial measures, the inclusion of spatial measures without the presence of spatial dimensions, among others. <p><p>Moreover, one of the important characteristics of multidimensional models is the presence of a time dimension for keeping track of changes in measures. However, this dimension cannot be used to model changes in other dimensions. <p>Therefore, usual multidimensional models are not symmetric in the way of representing changes for measures and dimensions. Further, there is still a lack of analysis indicating which concepts already developed for providing temporal support in conventional databases can be applied and be useful for different elements composing a multidimensional model. <p><p>In order to handle in a similar manner temporal changes to all elements of a multidimensional model, we introduce a temporal extension for the MultiDimER model. This extension is based on the research in the area of temporal databases, which have been successfully used for modeling time-varying information for several decades. We propose the inclusion of different temporal types, such as valid and transaction time, which are obtained from source systems, in addition to the DW loading time generated in DWs. We use this temporal support for a conceptual representation of time-varying dimensions, hierarchies, and measures. We also refer to specific constraints that should be imposed on time-varying hierarchies and to the problem of handling multiple time granularities between source systems and DWs. <p><p>Furthermore, the design of DWs is not an easy task. It requires to consider all phases from the requirements specification to the final implementation including the ETL process. It should also take into account that the inclusion of different data items in a DW depends on both, users' needs and data availability in source systems. However, currently, designers must rely on their experience due to the lack of a methodological framework that considers above-mentioned aspects. <p><p>In order to assist developers during the DW design process, we propose a methodology for the design of conventional, spatial, and temporal DWs. We refer to different phases, such as requirements specification, conceptual, logical, and physical modeling. We include three different methods for requirements specification depending on whether users, operational data sources, or both are the driving force in the process of requirement gathering. We show how each method leads to the creation of a conceptual multidimensional model. We also present logical and physical design phases that refer to DW structures and the ETL process.<p><p>To ensure the correctness of the proposed conceptual models, i.e. with conventional data, with the spatial data, and with time-varying data, we formally define them providing their syntax and semantics. With the aim of assessing the usability of our conceptual model including representation of different kinds of hierarchies as well as spatial and temporal support, we present real-world examples. Pursuing the goal that the proposed conceptual solutions can be implemented, we include their logical representations using relational and object-relational databases.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
5

Une approche automatisée basée sur des contraintes d’intégrité définies en UML et OCL pour la vérification de la cohérence logique dans les systèmes SOLAP : applications dans le domaine agri-environnemental / An automated approach based on integrity constraints defined in UML and OCL for the verification of logical consistency in SOLAP systems : applications in the agri-environmental field

Boulil, Kamal 26 October 2012 (has links)
Les systèmes d'Entrepôts de Données et OLAP spatiaux (EDS et SOLAP) sont des technologies d'aide à la décision permettant l'analyse multidimensionnelle de gros volumes de données spatiales. Dans ces systèmes, la qualité de l'analyse dépend de trois facteurs : la qualité des données entreposées, la qualité des agrégations et la qualité de l’exploration des données. La qualité des données entreposées dépend de critères comme la précision, l'exhaustivité et la cohérence logique. La qualité d'agrégation dépend de problèmes structurels (e.g. les hiérarchies non strictes qui peuvent engendrer le comptage en double des mesures) et de problèmes sémantiques (e.g. agréger les valeurs de température par la fonction Sum peut ne pas avoir de sens considérant une application donnée). La qualité d'exploration est essentiellement affectée par des requêtes utilisateur inconsistantes (e.g. quelles ont été les valeurs de température en URSS en 2010 ?). Ces requêtes peuvent engendrer des interprétations erronées des résultats. Cette thèse s'attaque aux problèmes d'incohérence logique qui peuvent affecter les qualités de données, d'agrégation et d'exploration. L'incohérence logique est définie habituellement comme la présence de contradictions dans les données. Elle est typiquement contrôlée au moyen de Contraintes d'Intégrité (CI). Dans cette thèse nous étendons d'abord la notion de CI (dans le contexte des systèmes SOLAP) afin de prendre en compte les incohérences relatives aux agrégations et requêtes utilisateur. Pour pallier les limitations des approches existantes concernant la définition des CI SOLAP, nous proposons un Framework basé sur les langages standards UML et OCL. Ce Framework permet la spécification conceptuelle et indépendante des plates-formes des CI SOLAP et leur implémentation automatisée. Il comporte trois parties : (1) Une classification des CI SOLAP. (2) Un profil UML implémenté dans l'AGL MagicDraw, permettant la représentation conceptuelle des modèles des systèmes SOLAP et de leurs CI. (3) Une implémentation automatique qui est basée sur les générateurs de code Spatial OCL2SQL et UML2MDX qui permet de traduire les spécifications conceptuelles en code au niveau des couches EDS et serveur SOLAP. Enfin, les contributions de cette thèse ont été appliquées dans le cadre de projets nationaux de développement d'applications (S)OLAP pour l'agriculture et l'environnement. / Spatial Data Warehouse (SDW) and Spatial OLAP (SOLAP) systems are Business Intelligence (BI) allowing for interactive multidimensional analysis of huge volumes of spatial data. In such systems the quality ofanalysis mainly depends on three components : the quality of warehoused data, the quality of data aggregation, and the quality of data exploration. The warehoused data quality depends on elements such accuracy, comleteness and logical consistency. The data aggregation quality is affected by structural problems (e.g., non-strict dimension hierarchies that may cause double-counting of measure values) and semantic problems (e.g., summing temperature values does not make sens in many applications). The data exploration quality is mainly affected by inconsistent user queries (e.g., what are temperature values in USSR in 2010?) leading to possibly meaningless interpretations of query results. This thesis address the problems of logical inconsistency that may affect the data, aggregation and exploration qualities in SOLAP. The logical inconsistency is usually defined as the presence of incoherencies (contradictions) in data ; It is typically controlled by means of Integrity Constraints (IC). In this thesis, we extends the notion of IC (in the SOLAP domain) in order to take into account aggregation and query incoherencies. To overcome the limitations of existing approaches concerning the definition of SOLAP IC, we propose a framework that is based on the standard languages UML and OCL. Our framework permits a plateforme-independent conceptual design and an automatic implementation of SOLAP IC ; It consists of three parts : (1) A SOLAP IC classification, (2) A UML profile implemented in the CASE tool MagicDraw, allowing for a conceptual design of SOLAP models and their IC, (3) An automatic implementation based on the code generators Spatial OCLSQL and UML2MDX, which allows transforming the conceptual specifications into code. Finally, the contributions of this thesis have been experimented and validated in the context of French national projetcts aimming at developping (S)OLAP applications for agriculture and environment.

Page generated in 0.0729 seconds