Spelling suggestions: "subject:"tensoativo""
51 |
[pt] ANÁLISE DO FATOR DE INTENSIDADE DE TENSÃO PARA UMA PLACA FISSURADA COM REFORÇOS REBITADOS E COLADOS / [en] STRESS INTENSITY FACTOR ANALYSIS FOR A CRACKED PLATE WITH RIVETED AND BONDED REINFORCEMENTSVITOR LIMA MESQUITA 23 June 2022 (has links)
[pt] O surgimento de trincas em projetos estruturais tem sido um problema para
engenharia por algumas décadas, e uma das áreas onde este tópico é amplamente
estudado é em aeronaves comerciais. Vários acidentes ocorreram nas últimas
décadas devido ao aparecimento de uma trinca em aeronaves comerciais, e por essa
razão o estudo da mecânica da fratura é tão importante para este campo da
engenharia. Um componente estrutural é tolerante a danos se puder sustentar com
segurança o comprimento crítico a trincas até que seja reparado ou sua vida
econômica expire. Enrijecedores ou reforçadores têm a função principal de
melhorar a resistência e estabilidade dessas estruturas e fornecer um meio de
desacelerar ou parar a propagação de trincas em contenções nucleares, reatores,
viadutos, edifícios altos, aeronaves, cascos de navios, pontes e estruturas offshore.
Analisando o fator de intensidade de tensão e como o comportamento de uma folha
com e sem reforços é diferente são alguns dos problemas estudados neste trabalho.
O fator de intensidade de tensão (FIT), é um parâmetro que descreve a intensidade
do campo de tensão singular, foi usado com sucesso para estimar a resistência à
fratura e taxas de propagação de trinca por fadiga em situações em que as
suposições de elasticidade são válidas. Neste trabalho, o FIT foi obtido para placas
com reforços colados e rebitados, com base no método dos elementos finitos (MEF)
utilizando elementos quarter point por meio de simulações realizadas no software
ABAQUS. Forças no rebite foram calculadas para uma trinca com rebites e
longarinas espaçadas uniformemente. Os resultados apresentados são comparados
com os valores encontrados na literatura por meio de gráficos e mostram que o FIT
é significativamente menor do que para uma folha não enrijecida para os casos de
reforço estudados. / [en] The emergence of fractures in structural designs has been a problem for
engineering for some decades, and one of the areas where this topic is widely
studied is in commercial aircraft. Several accidents have occurred in the last
decades due to the appearance of a fracture in commercial aircraft, and for this
reason the study of fracture mechanics is so important for this field of engineering.
A structural component is tolerant of damage if it can safely sustain critical length
fractures until it is repaired or its economic life has expired. Reinforcers or stiffeners
have the main function of improving the resistance and stability of these structures
and providing a means of decelerating or stopping the propagation of fractures in
nuclear containments, reactors, viaducts, tall buildings, aircraft, ship hulls, bridges
and offshore structures. Analyzing the stress intensity factor and how the behavior
of a sheet with and without stiffeners is different are some of the issues studied in
this work. The stress-intensity factor (SIF), a parameter that describes the intensity
of the singular stress field, has been used successfully to estimate fracture strength
and fatigue crack growth rates in situations where the assumptions of linear
elasticity are valid. In this work, the SIF was obtained for plates with adhesive and
riveted reinforcements, based on the finite element method (FEM) using quarterpoint elements through simulations carried out in the ABAQUS software. Forces in
the rivet were calculated for a crack with riveted and evenly spaced stringers. The
complete results presented are compared with values found in the literature through
graphs. The results show that the stress intensity factor for the hardened sheet is
significantly lower than for an un-hardened sheet for both studied stiffener cases.
|
52 |
[pt] CARACTERIZAÇÃO DO COMPORTAMENTO MECÂNICO SOB FADIGA MULTIAXIAL DE BAIXO CICLO DAS LIGAS DE AÇO SAE 1020 E ALUMÍNIO 6351-T6 / [en] CHARACTERIZATION OF THE MECHANICAL BEHAVIOR UNDER MULTIAXIAL LOW CYCLE FATIGUE OF SAE 1020 STEEL AND 6351-T6 ALUMINUM ALLOYSTHIAGO ALMEIDA CUNHA 30 June 2020 (has links)
[pt] A falha mecânica conhecida como fadiga é caracterizada pela iniciação e/ou propagação de trincas, causada por forças variáveis. Suas metodologias tradicionais calculam uma tensão elástica uniaxial equivalente que atua no componente, a fim de compará-la com os dados experimentais de comportamento mecânico do material do componente sob cargas uniaxiais. Esta hipótese pode levar a resultados não conservativos, por considerar que o material é igualmente sensível a tensões normais e cisalhantes, o que é falso em várias aplicações práticas. Portanto, dados torcionais e multiaxiais são necessários para melhor prever a vida em fadiga dos componentes. Para executar estes experimentos, o presente trabalho propõe uma variedade de projetos de componentes e metodologias de montagem para que se possa usar em uma máquina de tração-torção Instron 8874 uma garra hidráulica originalmente projetada para uma máquina tração pura Instron 8501. É proposto um método simplificado para estimar, por controle de deslocamento, as propriedades de fadiga de baixo ciclo em cisalhamento (gama)N, evitando assim a necessidade de usar equipamentos caros e diferentes tipos de corpos de prova. Este método é usado para caracterização das ligas Aço SAE 1020 e Alumínio 6351-T6 e os dados levantados são comparados com as propriedades medidas de fadiga de baixo ciclo em tração (epsilon)N, identificando assim se o material é mais sensível a tensões normais ou cisalhantes. Um programa numérico é usado para ajustar as curvas (epsilon)N e (gama)N nos dados experimentais, e seus procedimentos de implementação são discutidos. Por fim, são propostos e calibrados modelos de fadiga multiaxial de plano crítico mais adequados para cada material testado, com base nos dados medidos. / [en] The mechanical failure known as fatigue is characterized by the formation and/or propagation of cracks caused by variable forces. Its traditional methodologies normally calculate an equivalent uniaxial tensile stress acting on the component, in order to compare it with the known experimental mechanical behavior data of the component s material measured under uniaxial loads. This assumption can lead to non-conservative results because it considers the material to be equally sensitive to shear and tensile stresses, which is not true in a wide range of practical applications. Therefore, torsional and multiaxial experimental data is necessary to better predict the fatigue life of components. To execute those experiments, the present work proposes a variety of component designs and assembly methodologies to use on an Instron 8874 axial-torsional testing machine a hydraulic grip originally designed for an Instron 8501 uniaxial testing machine. Furthermore, a simplified method to estimate shear (gamma)N low-cycle fatigue properties via displacement-controlled experiments is proposed to avoid the need of using expensive equipment and different specimen designs, and used for characterization of SAE 1020 Steel and 6351-T6 Aluminum alloys. This data is compared with the measured tensile (epsilon)N low-cycle fatigue properties to identify if these materials are tensile or shear sensitive under multiaxial loading conditions. A numerical computing code is used to fit (epsilon)N and (gamma)N curves to the experimental data, and its implementation procedures are discussed. Finally, the most suitable critical-plane multiaxial fatigue models are proposed and calibrated for each material tested, based on the measured data.
|
Page generated in 0.06 seconds