• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 54
  • 13
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A multi-proxy climate record from a raised bog in County Fermanagh, Northern Ireland: a critical examination of the link between bog surface wetness and solar variability

Swindles, Graeme T., Plunkett, G., Roe, H.M. January 2007 (has links)
No / A proxy climate record from a raised bog in County Fermanagh, Northern Ireland, is presented. The record spans the interval between 2850 cal. yr BC and cal. yr AD 1000 and chronological control is achieved through the use of tephrochronology and 14C dating, including a wiggle-match on one section of the record. Palaeoclimatic inferences are based on a combination of a testate amoebae-derived water table reconstruction, peat humification and plant macrofossil analyses. This multiproxy approach enables proxy-specific effects to be identified. Major wet shifts are registered in the proxies at ca. 1510 cal. yr BC, 750 cal. yr BC and cal. yr AD 470. Smaller magnitude shifts to wetter conditions are also recorded at ca. 380 cal. yr BC, 150 cal. yr BC, cal. yr AD 180, and cal. yr AD 690. It is hypothesised that the wet shifts are not merely local events as they appear to be linked to wider climate deteriorations in northwest Europe. Harmonic analysis of the proxies illustrates statistically significant periodicities of 580, 423-373, 307 and 265 years that may be related to wider Holocene climate cycles. This paper illustrates how the timing of climate changes registered in peat profiles records can be precisely constrained using tephrochronology to examine possible climatic responses to solar forcing. Relying on interpolated chronologies with considerable dating uncertainty must be avoided if the climatic responses to forcing mechanisms are to be fully understood.
22

The role of aquatic systems and the re-occupation and settlement of the North European Plain during the Lateglacial

Bramham Law, Cassian January 2013 (has links)
The Lateglacial between ∼14,600 - 11,500 cal yr BP is characterised by the rapid fluctuation of climatic conditions following the termination of the Last Glacial Maximum. During this period, the North European Plain (NEP) was re-occupied and settled by hunter-gather groups utilising a succession of lithic technocomplexes. Contrasting models of population expansion exist to explain the re-occupation of the NEP by ∼14,600 cal yr BP. Both rapid climatic amelioration and increased food resource availability on the NEP are suggested as possible stimuli. Studies of food resource availability as a stimulus for re-occupation and settlement of the NEP have long been dominated by the prevailing view that large mammal hunting was the dominant subsistence strategy. A number of archaeological finds across the NEP however, suggest that the exploitation of aquatic resources such as fish may have played a role in a more varied subsistence strategy during the period ∼14,600 - 11,500 cal yr BP. This thesis sets out to examine the development of palaeolake systems and examine their potential as a resource base for Lateglacial hunter-gatherers. This is achieved through the analysis of sedimentary organic matter and cladoceran records from five Lateglacial sites in northern Germany and southern Denmark, providing important information on basin development and the presence or absence of fish. The results suggest that significant variability existed in the development and resource availability of the basins over a local scale. Observed variability in the organic matter and cladoceran records within chronozone boundaries suggests that the Lateglacial – Holocene development of aquatic systems across the NEP cannot be solely explained by external climate change, and that local environmental and ecological factors are likely to have played a major part in their development. This thesis demonstrates that the local variance in aquatic conditions and fish populations would have offered, at best, limited and ephemeral resource availability and were therefore unlikely to have formed a major resource base for hunter-gatherer groups across the NEP. It is more likely that lakes were exploited opportunistically and as such formed only a minor component of a subsistence strategy more focussed on large mammal hunting.
23

Magma chamber assembly and dynamics of a supervolcano : Whakamaru, Taupo Volcanic Zone, New Zealand

Matthews, Naomi Elizabeth January 2011 (has links)
This thesis employs crystal-specific techniques, combined with field observations, petrology, geochemistry and numerical modelling to reconstruct the magmatic system associated with the ~ 340 ka Whakamaru supereruption, New Zealand. Comparisons are drawn with the ~ 74 ka Youngest Toba Tuff (YTT) supereruption. Whakamaru Group Ignimbrites contain five pumice types, characterised by different mineralogies and crystal contents. Pumice petrography and geochemistry indicate that basaltic magma mixing occurred, possibly triggering eruption. Geothermobarometers suggest an eruption temperature of ~ 770°C and magma storage at ~ 5 km depth. High-resolution thermal records from Ti-in-quartz analysis indicate a thermal pulse of ~ 100°C prior to eruption. Diffusion timescales show multiple recharge events with the most significant event occurring ~ 35 y prior to eruption. Zircon U-Pb data show that most crystallisation occurred at ~ 400 ka, with antecrysts and xenocrysts incorporated. Zircon trace-element data suggest multiple recharge events and complex mixing over ~ 100 ky, consistent with an incrementally growing reservoir. Oxygen-isotope data illustrate that zircon, quartz and feldspar crystallised together in equilibrium, with isotopically homogenous magma sources feeding the reservoir over time. Whakamaru and YTT tephra thickness and grain-size data were used in ash dispersal modelling. Results indicate the YTT eruption had a ~ 35 km column height and erupted volumes of 1500 – 1900 km³, with deposition from a co-ignimbrite phase; whereas Whakamaru had a Plinian column ~ 45 km high with SE dispersal and a minimum volume of ~ 400 km³. The widespread dispersal of large volumes of fine ash from both eruptions would have had global environmental consequences. The data are integrated to reconstruct a new Whakamaru magma reservoir model. The complex crystal records indicate the system was characterised by long periods of incremental assembly, mixing, recycling of material, and reactivation during multiple recharge episodes which perturbed the system and primed the magma for eruption.
24

Recent Mafic Eruptions at Newberry Volcano and in the Central Oregon Cascades: Physical Volcanology and Implications for Hazards

McKay, Daniele, McKay, Daniele January 2012 (has links)
Mafic eruptions have been the dominant form of volcanic activity in central Oregon throughout the Holocene. These eruptions have produced cinder cones, extensive lava flows, and tephra blankets. In most cases, the extent and volume of the tephra blankets has not been determined, despite the fact that future tephra production would pose considerable hazards to transportation, infrastructure, and public health. The economy of the region, which is largely based in tourism, would also be negatively impacted. For this reason, developing a better understanding of the extent and dynamics of tephra production at recent mafic vents is critical, both in terms of mitigating the hazards associated with future eruptions and in improving our scientific understanding of explosive mafic activity. Here I present detailed field and laboratory studies of tephra from recent mafic vents at Newberry Volcano and in the central Oregon High Cascades. Studies of Newberry vents show that eruption style is strongly correlated with eruptive volume, that extensive magma storage and assimilation occurred prior to the eruption of these vents, and that minimum pre-magmatic water content as recorded by plagioclase was 2.5 wt.%. Detailed mapping and physical studies of tephra deposits from High Cascades vents show that several recent eruptions produced extensive tephra deposits. These deposits are physically similar to well-documented historic eruptions that have been characterized as violent strombolian. At least one Cascade cinder cone (Sand Mountain) produced a tephra deposit that is unusually large in volume and characterized by uniformly fine-grained clasts, which is interpreted as evidence for syn-eruptive interaction with external water. Microtextural characteristics of tephra, along with an evaluation of possible water sources, support this interpretation. These investigations demonstrate that magma storage and eruption style at mafic vents is both variable and complex. Additionally, these studies show that cinder cones in central Oregon have the potential to erupt much more explosively than previously assumed. The results of this study will be an important tool for developing comprehensive regional hazard assessments. This dissertation includes previously published and unpublished co-authored material.
25

Tephrostratigraphy of Pliocene Drill Cores from Kenya and Ethiopia, and Pleistocene Exposures in the Ledi-Geraru Research Project Area, Ethiopia: Geological Context for the Evolution of Australopithecus and Homo

January 2019 (has links)
abstract: East African extensional basins have played a crucial role in revealing the evolution and characteristics of the early stages of continental rifting and for providing the geological context of hominin evolution and innovation. The numerous volcanic eruptions, rapid sedimentation and burial, and subsequent exposure through faulting and erosion, provide excellent conditions for the preservation of tectonic history, paleoenvironment data, and vertebrate fossils. The reconstruction of depositional environments and provision of geochronologic frameworks for hominin sites have been largely provided by geologic investigations in conjunction with paleontological studies, like the Ledi-Geraru Research Project (LGRP). High-resolution paleoclimate records that can be directly linked to hominin fossil outcrops have been developed by the Hominin Sites and Paleolakes Drilling Project (HSPDP) which collected sedimentary-paleolake cores at or near key hominin fossil sites. Two chapters of this dissertation are a result of research associated with the HSPDP. For HSPDP, I establish a tephrostratigraphic framework for the drill cores from the Northern Awash (Afar, Ethiopia) and Baringo-Tugen Hills-Barsemoi (Kenya) HSPDP sites. I characterize and fingerprint tephra through glass shard and feldspar phenocryst geochemistry. From tephra geochemical analyses, I establish chronostratigraphic ties between the HSPDP cores’ high-resolution paleoclimate records to outcrop stratigraphy which are associated with hominin fossils sites. Three chapters of this dissertation are a result of field work with the LGRP. I report new geological investigations (stratigraphic, tectonic, and volcanic) of two previously unmapped regions from the eastern Ledi-Geraru (ELG), Asboli and Markaytoli. Building upon this research I present interpretations from tephra analyses, detailed stratigraphic analyses, and geologic mapping, of the Pleistocene (~2.6 to < 2.45 Ma) basin history for the LGRP. My work with the LGRP helps to reconstruct a more complete Early Pleistocene depositional and geologic history of the lower Awash Valley. Overall, this dissertation contributes to the reconstruction of hominin paleoenvironments and the geochronological framework of the Pliocene and Pleistocene faunal/hominin records. It further contributes to rift basin history in East Africa by elaborating the later structural and stratigraphic history of the lower Awash region. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2019
26

Computer Model Inversion and Uncertainty Quantification in the Geosciences

White, Jeremy 25 April 2014 (has links)
The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for inversion. The worth of different types of tephra data to reduce parameter uncertainty is evaluated, as is the importance of different observation error models. The analyses reveal the importance using tephra granulometry data for inversion, which results in reduced uncertainty for most eruption parameters. In the third chapter, geophysical inversion is combined with hydrothermal modeling to evaluate the enthalpy of an undeveloped geothermal resource in a pull-apart basin located in southeastern Armenia. A high-dimensional gravity inversion is used to define the depth to the contact between the lower-density valley fill sediments and the higher-density surrounding host rock. The inverted basin depth distribution was used to define the hydrostratigraphy for the coupled groundwater-flow and heat-transport model that simulates the circulation of hydrothermal fluids in the system. Evaluation of several different geothermal system configurations indicates that the most likely system configuration is a low-enthalpy, liquid-dominated geothermal system.
27

中国山地東部の大沼湿原堆積物に挟まれるテフラの対比と推定噴出年代(第18回名古屋大学年代測定総合研究センターシンポジウム平成17(2005)年度報告)

加藤, 茂弘, KATOH, Shigehiro, 半田, 久美子, HANDA, Kumiko, 兵頭, 政幸, HYODO, Masayuki, 佐藤, 裕司, SATO, Hiroshi, 中村, 俊夫, NAKAMURA, Toshio, 山下, 透, YAMASHITA, Tohru, 檀原, 徹, DANHARA, Tohru 03 1900 (has links)
第18回名古屋大学年代測定総合研究センターシンポジウム平成17(2005)年度報告 Proceedings of the 18th symposiumon on Chronological Studies at the Nagoya University Center for Chronological Research in 2005 日時:平成18 (2006)年1月17日(火)、18日(水) 会場:名古屋大学シンポジオン Date:Januaryl7th and 18th, 2006 Venue:Nagoya Uhiversity Symposion Hall
28

Deciphering Deposits: Using Ground Penetrating Radar and Numerical Modeling to Characterize the Emplacement Mechanisms and Associated Energetics of Scoria Cone Eruption and Construction

Courtland, Leah Michelle 01 January 2013 (has links)
Our understanding of tephra depositional processes is significantly improved by high-resolution ground-penetrating radar (GPR) data collected at Cerro Negro volcano, Nicaragua. The data reveal three depositional regimes: (1) a near-vent region on the cone itself, where 10 GPR radargrams collected on the western flank show quantifiable differences between facies formed from low energy normal Strombolian and higher energy violent Strombolian processes, indicating imaging of scoria cone deposits may be useful in distinguishing eruptive style in older cones where the proximal to distal tephra blanket has eroded away; (2) a proximal zone in which horizons identified in crosswind profiles collected at distances of 700 and 1,000 m from the vent exhibit Gaussian distributions with a high degree of statistical confidence, with tephra thickness decreasing exponentially downwind from the cone base (350 m) to ~ 1,200 m from the vent, and where particles fall from a height of less than ~2 km; and (3) a medial zone, in which particles fall from ~4 to 7 km and the deposit is thicker than expected based on thinning trends observed in the proximal zone of the deposit, indicating a transition from sedimentation dominated by fallout from plume margins to that dominated by fallout from the buoyant eruption cloud. Horizons identified in a crosswind profile at 1600 m from vent exhibit Gaussian distributions, again with high degrees of statistical confidence. True diffusion coefficients are calculated from Gaussian fits of crosswind profiles and do not show any statistical variation between zones (2) and (3). Data display thinning trends that agree with the morphology predicted by the advection-diffusion equation to a high degree of statistical confidence, validating the use of this class of models in tephra forecasting. One such model, the Tephra2 model, is reformulated for student use. A strategy is presented for utilizing this research-caliber model to introduce university undergraduates to key concepts in model literacy, encouraging students to develop a deeper understanding of the applicability and limitations of hazard models generally. For this purpose, the Tephra2 numerical model is implemented on the VHub.org website, a venture in cyberinfrastructure that brings together volcanological models and educational materials, and provides students with the ability to explore and execute sophisticated numerical models like Tephra2.
29

Vulnerability of critical infrastructure to volcanic hazards

Wilson, Grant Michael January 2015 (has links)
Volcanic eruptions produce a range of concurrent, sequential and recurrent hazards which can impact society and critical infrastructure. For daily activities, modern societies are reliant on dependable functioning critical infrastructure, such as electrical supply; water supply; wastewater; transportation; communication networks; buildings; air conditioning and ventilation systems; and electronic equipment. In addition, during volcanic eruptions these sectors are vital for effective emergency response and recovery. Despite the importance of critical infrastructure, the systematic quantification of their vulnerability to volcanic hazards, a key aspect of volcanic risk management, has received little research attention. Successful volcanic risk management and disaster risk reduction are cost effective investments in preventing future losses during eruptions and increasing resilience to volcanic hazard impacts. Effective volcanic risk management requires the characterisation of both hazards and vulnerabilities to the same level of detail. This thesis develops a methodological framework to quantitatively assess the vulnerability of critical infrastructure sectors to volcanic hazard impacts. The focus is on fragility and vulnerability functions which provide quantitative relationships between impact (damage and disruption) and volcanic hazard intensity. The framework details how post-eruption infrastructure impact data, compiled in a newly established infrastructure impacts database, can be classified by hazard and impact intensity to derive vulnerability and fragility functions. Using the vulnerability framework, fragility functions for several critical infrastructure sectors for volcanic tephra fall impacts are derived. These functions are the first attempt to quantify the vulnerability of critical infrastructure sectors using a systematic approach. Using these fragility functions, risk is estimated for the electrical transmission network in the North Island of New Zealand using a newly developed probabilistic tephra fall hazard assessment. This thesis and framework provide a pathway forward for volcanic risk scientists to advance volcanic vulnerability assessments such that comprehensive and robust quantitative volcanic risk assessments are commonplace in infrastructure management practices. Improved volcanic vulnerability and risk assessments leads to enhanced risk-based decision making, prioritisation of risk reduction investment and overall reduction in volcanic risk.
30

Decolorization Of Synthetic Dye Solutions By Using Basaltic Tephra And Clinoptilolite

Duygulu, Yusuf Bahadir 01 July 2004 (has links) (PDF)
Discharge of colored effluents without decoloration originated from textile industries may cause serious problems in the receiving environments. In this study, natural materials that are basaltic tephra and clinoptilolite were used to remove various dyestuffs used in the textile industry. Those materials are cheap and available in large quantities in Turkey. The investigation of adsorption of basic, acidic and reactive dyes on these materials is the objective of this study. During preliminary experiments it was seen that adsorption equilibrium was reached in about 2 days. In adsorption experiments, in order to obtain adsorption isotherms, a fixed amount of adsorbent and 100 mL dye solutions of different concentrations were placed in glass bottles which were shaken at 200 rpm and 25&plusmn / 2oC for 2 days. Then, samples were filtered and the equilibrium concentrations of dyestuffs in the solutions were determined by using spectrophotometer at appropriate wavelength corresponding to the maximum absorbency. After equilibrium concentrations of the solutions were obtained, Langmuir and Freundlich adsorption isotherm constants were calculated for the adsorbents used in this study. The removal efficiencies for cationic basic dyes are higher than those for anionic acidic and reactive dyes with the natural materials. Therefore, modification of surface properties of natural materials with a cationic surfactant was considered to increase the removal efficiencies of those for anionic dyes. After modification of the surface properties, adsorption capacities of adsorbents for anionic dyes were higher than those of natural materials. Finally, the adsorption capacity of activated carbon for the same dyes was determined to compare with that of natural and modified materials. The results showed that the adsorption of dyes on adsorbents used in this study fitted nicely the Langmuir Isotherm Equations.

Page generated in 0.0415 seconds