• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions

Post, Joachim January 2006 (has links)
Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model’s capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 % of croplands area as “surplus” land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 % should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status. / Böden speichern große Mengen Kohlenstoff (C) und beeinflussen wesentlich den globalen C Haushalt. Schon geringe Änderungen der Steuergrößen des Bodenkohlenstoffs können dazu führen, dass beträchtliche Mengen CO2, ein Treibhausgas, in die Atmosphäre gelangen und zur globalen Erwärmung und dem Klimawandel beitragen. Der globale Temperaturanstieg verursacht dabei höchstwahrscheinlich eine Rückwirkung auf den Bodenkohlenstoffhaushalt mit einem einhergehenden erhöhten CO2 Fluss der Böden in die Atmosphäre. Weiterhin wirken sich Änderungen im Bodenkohlenstoffhaushalt auf die Bodenfruchtbarkeit und Bodenqualität aus, wobei eine Minderung der Bodenkohlenstoffvorräte wichtige Funtionen des Bodens beeinträchtigt und folglich den Boden als wichtige Ressource nachhaltig beinflusst. Demzufolge ist die Quantifizierung der Bodenkohlenstoffdynamik unter heutigen und zukünftigen Bedingungen von hohem Interesse und erfordert eine integrierte Betrachtung der wesentlichen Faktoren und Prozesse. Zur Quantifizierung wurde ein ökohydrologisches Flusseinzugsgebietsmodell erweitert. Ziel des erweiterten Modells ist es fundierte Informationen zu Veränderungen des Bodenkohlenstoffhaushaltes, neben Veränderungen der Wasserqualität, der Wasserverfügbarkeit und des Vegetationswachstums unter Globalem Wandel in meso- bis makroskaligen Flusseinzugsgebieten bereitzustellen. Dies wird am Beispiel eines zentraleuropäischen Flusseinzugsgebietes (der Elbe) demonstriert. Zusammenfassend ergibt diese Arbeit: ▪ eine Quantifizierung der heutigen und zukünftigen Auswirkungen des Klimawandels sowie von Änderungen der Landnutzung (Bodenbedeckung und Bodenbearbeitung) auf den Bodenkohlenstoffhaushalt agrarisch genutzter Räume im Einzugsgebiet der Elbe. ▪ eine Beurteilung welche Prozesse, und zu welchem Prozessdetail, zur integrierten Simulation der Bodenkohlenstoffdynamik in der meso- bis makroskala zu berücksichtigen sind. Weiterhin wird die Eignung der Modellerweiterung zur Simulation dieser Prozesse unter der Zuhilfenahme von Messwerten dargelegt. ▪ darauf begründet wird eine Prozessbeschreibung vorgeschlagen die die Eigenschaften der Bodenkohlenstoffspeicher und deren Umsetzungsrate mit in der betrachteten Skala zur Verfügung stehenden Messdaten und Geoinformationen verbindet. Die vorgeschlagene Prozessbeschreibung kann als robust hinsichtlich der Parametrisierung angesehen werden, da sie mit vergleichsweise wenigen Modelparametern eine ähnliche Güte wie andere Bodenkohlenstoffmodelle ergibt. ▪ eine umfassende Betrachtung der Modell- und Eingangsdatenunsicherheiten von Modellergebnissen in ihrer räumlichen und zeitlichen Ausprägung. Das in dieser Arbeit vorgestellte Modellsystem erlaubt eine Quantifizierung der Auswirkungen des Klima- und Landnutzungswandels auf den Bodenkohlenstoffhaushalt. Neu dabei ist, dass neben Auswirkungen auf den Bodenkohlenstoffhaushalt auch Auswirkungen auf Wasserverfügbarkeit, Wasserqualität, Vegetationswachstum und landwirtschaftlicher Produktivität erfasst werden können. Die im Rahmen dieser Arbeit dargelegten Ergebnisse erlauben eine integrierte Betrachtung der Auswirkungen des Globalen Wandels auf wichtige Ökosystemfunktionen in meso- bis makro-skaligen Flusseinzugsgebieten. Weiterhin können hier gewonnene Informationen zur Potentialabschätzung der Böden zur Linderung des Klimawandels (durch C Festlegung) und zum Erhalt ihrer Fruchtbarkeit genutzt werden.
2

Process-based simulation of the terrestrial biosphere : an evaluation of present-day and future terrestrial carbon balance estimates and their uncertainty

Zaehle, Sönke January 2005 (has links)
<p>At present, carbon sequestration in terrestrial ecosystems slows the growth rate of atmospheric CO<sub>2</sub> concentrations, and thereby reduces the impact of anthropogenic fossil fuel emissions on the climate system. Changes in climate and land use affect terrestrial biosphere structure and functioning at present, and will likely impact on the terrestrial carbon balance during the coming decades - potentially providing a positive feedback to the climate system due to soil carbon releases under a warmer climate. Quantifying changes, and the associated uncertainties, in regional terrestrial carbon budgets resulting from these effects is relevant for the scientific understanding of the Earth system and for long-term climate mitigation strategies.</p> <p>A model describing the relevant processes that govern the terrestrial carbon cycle is a necessary tool to project regional carbon budgets into the future. This study (1) provides an extensive evaluation of the parameter-based uncertainty in model results of a leading terrestrial biosphere model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), against a range of observations and under climate change, thereby complementing existing studies on other aspects of model uncertainty; (2) evaluates different hypotheses to explain the age-related decline in forest growth, both from theoretical and experimental evidence, and introduces the most promising hypothesis into the model; (3) demonstrates how forest statistics can be successfully integrated with process-based modelling to provide long-term constraints on regional-scale forest carbon budget estimates for a European forest case-study; and (4) elucidates the combined effects of land-use and climate changes on the present-day and future terrestrial carbon balance over Europe for four illustrative scenarios - implemented by four general circulation models - using a comprehensive description of different land-use types within the framework of LPJ-DGVM.</p> <p>This study presents a way to assess and reduce uncertainty in process-based terrestrial carbon estimates on a regional scale. The results of this study demonstrate that simulated present-day land-atmosphere carbon fluxes are relatively well constrained, despite considerable uncertainty in modelled net primary production. Process-based terrestrial modelling and forest statistics are successfully combined to improve model-based estimates of vegetation carbon stocks and their change over time. Application of the advanced model for 77 European provinces shows that model-based estimates of biomass development with stand age compare favourably with forest inventory-based estimates for different tree species. Driven by historic changes in climate, atmospheric CO<sub>2</sub> concentration, forest area and wood demand between 1948 and 2000, the model predicts European-scale, present-day age structure of forests, ratio of biomass removals to increment, and vegetation carbon sequestration rates that are consistent with inventory-based estimates. Alternative scenarios of climate and land-use change in the 21<sup>st</sup> century suggest carbon sequestration in the European terrestrial biosphere during the coming decades will likely be on magnitudes relevant to climate mitigation strategies. However, the uptake rates are small in comparison to the European emissions from fossil fuel combustion, and will likely decline towards the end of the century. Uncertainty in climate change projections is a key driver for uncertainty in simulated land-atmosphere carbon fluxes and needs to be accounted for in mitigation studies of the terrestrial biosphere.</p> / <p>Kohlenstoffspeicherung in terrestrischen Ökosystemen reduziert derzeit die Wirkung anthropogener CO<sub>2</sub>-Emissionen auf das Klimasystem, indem sie die Wachstumsrate der atmosphärischer CO<sub>2</sub>-Konzentration verlangsamt. Die heutige terrestrische Kohlenstoffbilanz wird wesentlich von Klima- und Landnutzungsänderungen beeinflusst. Diese Einflussfaktoren werden sich auch in den kommenden Dekaden auf die terrestrische Biosphäre auswirken, und dabei möglicherweise zu einer positiven Rückkopplung zwischen Biosphäre und Klimasystem aufgrund von starken Bodenkohlenstoffverlusten in einem wärmeren Klima führen. Quantitative Abschätzungen der Wirkung dieser Einflussfaktoren - sowie der mit ihnen verbundenen Unsicherheit - auf die terrestrische Kohlenstoffbilanz sind daher sowohl für das Verständnis des Erdsystems, als auch für eine langfristig angelegte Klimaschutzpolitik relevant.</p> <p>Um regionale Kohlenstoffbilanzen in die Zukunft zu projizieren, sind Modelle erforderlich, die die wesentlichen Prozesse des terrestrischen Kohlenstoffkreislaufes beschreiben. Die vorliegende Arbeit (1) analysiert die parameterbasierte Unsicherheit in Modellergebnissen eines der führenden globalen terrestrischen Ökosystemmodelle (LPJ-DGVM) im Vergleich mit unterschiedlichen ökosystemaren Messgrößen, sowie unter Klimawandelprojektionen, und erweitert damit bereits vorliegende Studien zu anderen Aspekten der Modelunsicherheit; (2) diskutiert unter theoretischen und experimentellen Aspekten verschiedene Hypothesen über die altersbedingte Abnahme des Waldwachstums, und implementiert die vielversprechenste Hypothese in das Model; (3) zeigt für eine europäische Fallstudie, wie Waldbestandsstatistiken erfolgreich für eine verbesserte Abschätzung von regionalen Kohlenstoffbilanzen in Wäldern durch prozessbasierten Modelle angewandt werden können; (4) untersucht die Auswirkung möglicher zukünftiger Klima- und Landnutzungsänderungen auf die europäische Kohlenstoffbilanz anhand von vier verschiedenen illustrativen Szenarien, jeweils unter Berücksichtigung von Klimawandelprojektionen vier verschiedener Klimamodelle. Eine erweiterte Version von LPJ-DGVM findet hierfür Anwendung, die eine umfassende Beschreibung der Hauptlandnutzungstypen beinhaltet. </p> <p>Die vorliegende Arbeit stellt einen Ansatz vor, um Unsicherheiten in der prozessbasierten Abschätzung von terrestrischen Kohlenstoffbilanzen auf regionaler Skala zu untersuchen und zu reduzieren. Die Ergebnisse dieser Arbeit zeigen, dass der Nettokohlenstoffaustausch zwischen terrestrischer Biosphäre und Atmosphäre unter heutigen klimatischen Bedingungen relativ sicher abgeschätzt werden kann, obwohl erhebliche Unsicherheit über die modelbasierte terrestrische Nettoprimärproduktion existiert. Prozessbasierte Modellierung und Waldbestandsstatistiken wurden erfolgreich kombiniert, um verbesserte Abschätzungen von regionalen Kohlenstoffvorräten und ihrer Änderung mit der Zeit zu ermöglichen. Die Anwendung des angepassten Modells in 77 europäischen Regionen zeigt, dass modellbasierte Abschätzungen des Biomasseaufwuchses in Wäldern weitgehend mit inventarbasierten Abschätzungen für verschiede Baumarten übereinstimmen. Unter Berücksichtigung von historischen Änderungen in Klima, atmosphärischem CO<sub>2</sub>-Gehalt, Waldfläche und Holzernte (1948-2000) reproduziert das Model auf europäischer Ebene die heutigen, auf Bestandsstatistiken beruhenden, Abschätzungen von Waldaltersstruktur, das Verhältnis von Zuwachs und Entnahme von Biomasse, sowie die Speicherungsraten im Kohlenstoffspeicher der Vegetation. Alternative Szenarien von zukünftigen Landnutzungs- und Klimaänderungen legen nahe, dass die Kohlenstoffaufnahme der europäischen terrestrischen Biosphäre von relevanter Größenordnung für Klimaschutzstrategien sind. Die Speicherungsraten sind jedoch klein im Vergleich zu den absoluten europäischen CO<sub>2</sub>-Emissionen, und nehmen zudem sehr wahrscheinlich gegen Ende des 21. Jahrhunderts ab. Unsicherheiten in Klimaprojektionen sind eine Hauptursache für die Unsicherheiten in den modellbasierten Abschätzungen des zukünftigen Nettokohlenstoffaustausches und müssen daher in Klimaschutzanalysen der terrestrischen Biosphäre berücksichtigt werden.</p>

Page generated in 0.1096 seconds