• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical modeling and detection for digital image forensics / Modélisation et déctection statistiques pour la criminalistique des images numériques

Thai, Thanh Hai 28 August 2014 (has links)
Le XXIème siècle étant le siècle du passage au tout numérique, les médias digitaux jouent maintenant un rôle de plus en plus important dans la vie de tous les jours. De la même manière, les logiciels sophistiqués de retouche d’images se sont démocratisés et permettent aujourd’hui de diffuser facilement des images falsifiées. Ceci pose un problème sociétal puisqu’il s’agit de savoir si ce que l’on voit a été manipulé. Cette thèse s'inscrit dans le cadre de la criminalistique des images numériques. Deux problèmes importants sont abordés : l'identification de l'origine d'une image et la détection d'informations cachées dans une image. Ces travaux s'inscrivent dans le cadre de la théorie de la décision statistique et proposent la construction de détecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme. Afin d'atteindre une performance de détection élevée, il est proposé d'exploiter les propriétés des images naturelles en modélisant les principales étapes de la chaîne d'acquisition d'un appareil photographique. La méthodologie, tout au long de ce manuscrit, consiste à étudier le détecteur optimal donné par le test du rapport de vraisemblance dans le contexte idéal où tous les paramètres du modèle sont connus. Lorsque des paramètres du modèle sont inconnus, ces derniers sont estimés afin de construire le test du rapport de vraisemblance généralisé dont les performances statistiques sont analytiquement établies. De nombreuses expérimentations sur des images simulées et réelles permettent de souligner la pertinence de l'approche proposée / The twenty-first century witnesses the digital revolution that allows digital media to become ubiquitous. They play a more and more important role in our everyday life. Similarly, sophisticated image editing software has been more accessible, resulting in the fact that falsified images are appearing with a growing frequency and sophistication. The credibility and trustworthiness of digital images have been eroded. To restore the trust to digital images, the field of digital image forensics was born. This thesis is part of the field of digital image forensics. Two important problems are addressed: image origin identification and hidden data detection. These problems are cast into the framework of hypothesis testing theory. The approach proposes to design a statistical test that allows us to guarantee a prescribed false alarm probability. In order to achieve a high detection performance, it is proposed to exploit statistical properties of natural images by modeling the main steps of image processing pipeline of a digital camera. The methodology throughout this manuscript consists of studying an optimal test given by the Likelihood Ratio Test in the ideal context where all model parameters are known in advance. When the model parameters are unknown, a method is proposed for parameter estimation in order to design a Generalized Likelihood Ratio Test whose statistical performances are analytically established. Numerical experiments on simulated and real images highlight the relevance of the proposed approach
2

Segmentation automatique de parole en phones. Correction d'étiquetage par l'introduction de mesures de confiance

Nefti, Samir 16 December 2004 (has links) (PDF)
Un système de synthèse de parole par concaténation d'unités acoustiques utilise un dictionnaire de ces unités, construit à partir d'un corpus de parole mono-locuteur segmentée en éléments acoustiques, généralement phonétiques. Pour atteindre une qualité de parole synthétique suffisante, ce dictionnaire doit être richement fourni, et par conséquent nécessite un corpus de plusieurs heures de parole.<br />La segmentation manuelle d'un tel corpus de parole est fastidieuse, d'où l'intérêt de la segmentation automatique. À condition de disposer des transcriptions phonétiques réelles des énoncés, les méthodes automatiques produisent une segmentation de qualité approximativement équivalente à celle d'une segmentation manuelle. Cependant, la transcription manuelle du contenu phonétique du corpus de parole est également fastidieuse.<br />Cette étude concerne la segmentation automatique de parole en phones qui utilise des transcriptions phonétiques automatiquement produites à partir du texte. Elle porte sur la détection et la correction des erreurs d'étiquetage phonétique que contiennent généralement ces transcriptions phonétiques automatiques. Les résultats obtenus dans cette étude sont significativement positifs.
3

MMD and Ward criterion in a RKHS : application to Kernel based hierarchical agglomerative clustering / Maximum Dean Discrepancy et critère de Ward dans un RKHS : application à la classification hierarchique à noyau

Li, Na 01 December 2015 (has links)
La classification non supervisée consiste à regrouper des objets afin de former des groupes homogènes au sens d’une mesure de similitude. C’est un outil utile pour explorer la structure d’un ensemble de données non étiquetées. Par ailleurs, les méthodes à noyau, introduites initialement dans le cadre supervisé, ont démontré leur intérêt par leur capacité à réaliser des traitements non linéaires des données en limitant la complexité algorithmique. En effet, elles permettent de transformer un problème non linéaire en un problème linéaire dans un espace de plus grande dimension. Dans ce travail, nous proposons un algorithme de classification hiérarchique ascendante utilisant le formalisme des méthodes à noyau. Nous avons tout d’abord recherché des mesures de similitude entre des distributions de probabilité aisément calculables à l’aide de noyaux. Parmi celles-ci, la maximum mean discrepancy a retenu notre attention. Afin de pallier les limites inhérentes à son usage, nous avons proposé une modification qui conduit au critère de Ward, bien connu en classification hiérarchique. Nous avons enfin proposé un algorithme itératif de clustering reposant sur la classification hiérarchique à noyau et permettant d’optimiser le noyau et de déterminer le nombre de classes en présence / Clustering, as a useful tool for unsupervised classification, is the task of grouping objects according to some measured or perceived characteristics of them and it has owned great success in exploring the hidden structure of unlabeled data sets. Kernel-based clustering algorithms have shown great prominence. They provide competitive performance compared with conventional methods owing to their ability of transforming nonlinear problem into linear ones in a higher dimensional feature space. In this work, we propose a Kernel-based Hierarchical Agglomerative Clustering algorithms (KHAC) using Ward’s criterion. Our method is induced by a recently arisen criterion called Maximum Mean Discrepancy (MMD). This criterion has firstly been proposed to measure difference between different distributions and can easily be embedded into a RKHS. Close relationships have been proved between MMD and Ward's criterion. In our KHAC method, selection of the kernel parameter and determination of the number of clusters have been studied, which provide satisfactory performance. Finally an iterative KHAC algorithm is proposed which aims at determining the optimal kernel parameter, giving a meaningful number of clusters and partitioning the data set automatically
4

Statistical detection for digital image forensics / Détection statistique pour la criminalistique des images numériques

Qiao, Tong 25 April 2016 (has links)
Le XXIème siècle étant le siècle du passage au tout numérique, les médias digitaux jouent un rôle de plus en plus important. Les logiciels sophistiqués de retouche d’images se sont démocratisés et permettent de diffuser facilement des images falsifiées. Ceci pose un problème sociétal puisqu’il s’agit de savoir si ce que l’on voit a été manipulé. Cette thèse s'inscrit dans le cadre de la criminalistique des images. Trois problèmes sont abordés : l'identification de l'origine d'une image, la détection d'informations cachées dans une image et la détection d'un exemple falsification : le rééchantillonnage. Ces travaux s'inscrivent dans le cadre de la théorie de la décision statistique et proposent la construction de détecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme. Afin d'atteindre une performance de détection élevée, il est proposé d'exploiter les propriétés des images naturelles en modélisant les principales étapes de la chaîne d'acquisition d'un appareil photographique. La méthodologie, tout au long de ce manuscrit, consiste à étudier le détecteur optimal donné par le test du rapport de vraisemblance dans le contexte idéal où tous les paramètres du modèle sont connus. Lorsque des paramètres du modèle sont inconnus, ces derniers sont estimés afin de construire le test du rapport de vraisemblance généralisé dont les performances statistiques sont analytiquement établies. De nombreuses expérimentations sur des images simulées et réelles permettent de souligner la pertinence de l'approche proposée / The remarkable evolution of information technologies and digital imaging technology in the past decades allow digital images to be ubiquitous. The tampering of these images has become an unavoidable reality, especially in the field of cybercrime. The credibility and trustworthiness of digital images have been eroded, resulting in important consequences in terms of political, economic, and social issues. To restore the trust to digital images, the field of digital forensics was born. Three important problems are addressed in this thesis: image origin identification, detection of hidden information in a digital image and an example of tampering image detection : the resampling. The goal is to develop a statistical decision approach as reliable as possible that allows to guarantee a prescribed false alarm probability. To this end, the approach involves designing a statistical test within the framework of hypothesis testing theory based on a parametric model that characterizes physical and statistical properties of natural images. This model is developed by studying the image processing pipeline of a digital camera. As part of this work, the difficulty of the presence of unknown parameters is addressed using statistical estimation, making the application of statistical tests straightforward in practice. Numerical experiments on simulated and real images have highlighted the relevance of the proposed approach
5

Bayesian multiple hypotheses testing with quadratic criterion / Test bayésien entre hypothèses multiples avec critère quadratique

Zhang, Jian 04 April 2014 (has links)
Le problème de détection et localisation d’anomalie peut être traité comme le problème du test entre des hypothèses multiples (THM) dans le cadre bayésien. Le test bayésien avec la fonction de perte 0−1 est une solution standard pour ce problème, mais les hypothèses alternatives pourraient avoir une importance tout à fait différente en pratique. La fonction de perte 0−1 ne reflète pas cette réalité tandis que la fonction de perte quadratique est plus appropriée. L’objectif de cette thèse est la conception d’un test bayésien avec la fonction de perte quadratique ainsi que son étude asymptotique. La construction de ce test est effectuée en deux étapes. Dans la première étape, un test bayésien avec la fonction de perte quadratique pour le problème du THM sans l’hypothèse de base est conçu et les bornes inférieures et supérieures des probabilités de classification erronée sont calculées. La deuxième étape construit un test bayésien pour le problème du THM avec l’hypothèse de base. Les bornes inférieures et supérieures des probabilités de fausse alarme, des probabilités de détection manquée, et des probabilités de classification erronée sont calculées. A partir de ces bornes, l’équivalence asymptotique entre le test proposé et le test standard avec la fonction de perte 0−1 est étudiée. Beaucoup d’expériences de simulation et une expérimentation acoustique ont illustré l’efficacité du nouveau test statistique / The anomaly detection and localization problem can be treated as a multiple hypotheses testing (MHT) problem in the Bayesian framework. The Bayesian test with the 0−1 loss function is a standard solution for this problem, but the alternative hypotheses have quite different importance in practice. The 0−1 loss function does not reflect this fact while the quadratic loss function is more appropriate. The objective of the thesis is the design of a Bayesian test with the quadratic loss function and its asymptotic study. The construction of the test is made in two steps. In the first step, a Bayesian test with the quadratic loss function for the MHT problem without the null hypothesis is designed and the lower and upper bounds of the misclassification probabilities are calculated. The second step constructs a Bayesian test for the MHT problem with the null hypothesis. The lower and upper bounds of the false alarm probabilities, the missed detection probabilities as well as the misclassification probabilities are calculated. From these bounds, the asymptotic equivalence between the proposed test and the standard one with the 0-1 loss function is studied. A lot of simulation and an acoustic experiment have illustrated the effectiveness of the new statistical test
6

Optimal tests for symmetry

Cassart, Delphine 01 June 2007 (has links)
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétrique localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour trois modèles d'asymétrie. <p>La construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application. <p>Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.<p><p>Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).<p>Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.<p>Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.<p><p>Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables. <p>Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance. <p>Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités. <p><p>A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.<p>Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations. / Doctorat en sciences, Orientation statistique / info:eu-repo/semantics/nonPublished

Page generated in 0.102 seconds