• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 3
  • Tagged with
  • 15
  • 15
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conjecture de brumer-stark non abélienne

Dejou, Gaëlle 24 June 2011 (has links) (PDF)
La recherche d'annulateurs du groupe des classes d'idéaux d'une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu'un élément de l'anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l'extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l'étude de l'analogue non abélien de l'élément de Brumer, nécessaire à l'établissement d'une conjecture non abélienne. La seconde partie est consacrée à l'énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu'aux propriétés qu'elle vérifie. Nous nous intéressons notamment aux propriétés de changement d'extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d'indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d'abélianité permettant d'obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés.
12

The d1-differential of the rank spectral sequence for algebraic k-theory / K-Théorie Algébrique et Symboles Modulaires

Sun, Fei 16 January 2015 (has links)
Dans son preprint, M. Bruno Kahn a construit une suite spectrale par rang en utilisant la méthode catégorique. Cette suite spectrale est construit par une filtration de la catégorie des modules sans-torsion de type fini d'un anneau intègre A ce qui explique le nom : suite spectrale par rangs. Cette suite spectrale converge vers les groupes d'homologies de la Q-construction de la catégorie de A-modules sans torsion de type fini et elle été utilisé par Quillen pour prouver que les K-groupes sont de génération finie pour anneau d'intègres d'un corps de nombres. Notre but de cette thèse est de calculer le différentiel de la suite spectrale par rangs qui peut servit comme une première étape d'une idée générale d'unifier les calculs de rangs des K-groupes de la courbe sur un corps fini (G. Harder) et la courbe arithmétique (A. Borel). Pour gagner ça, nous étudions le foncteur cellulaire (connexe) et les constructions de Grothendieck en détail, en particulier ses propriétés homotopiques. En utilisant ça, nous pouvons mettre le différentiel dans certain triangles distingués de foncteurs sur une catégorie, puis nous réalisons ces foncteurs explicits en langages d'immeuble de Tits, module de Steinberg et symbole modulaire au sens d'Ash-Rudolph. Nous avons aussi obliger de fabriquer un autre symbole : le symbole étendu pour étudier l'homologie de la suspension d'immeuble de Tits, mais nous montons que ce symbole est équivalent que symbole modulaire. / Bruno Kahn has constructed a rank spectral sequence by using a purely categorical approach. This spectral sequence was derived by using a filtration of the category of torsion-free modules over integral domain by ranks and hence the name: rank spectral sequence. This spectral sequence converges to the homology groups of the Q-construction over the category of finitely generated torsion-free modules over an integral ring. Quillen used it in the proof of the finite generation of K-groups of rings of integers. Our goal in this thesis is to calculate the differential of the rank spectral sequence. We believe that this is a first step towards a much bigger project, that is, to unify the calculation of the ranks of K-groups of curves over a finite field (result of G. Harder) and of arithmetic curves (result of A. Borel).To achieve our goal, we put the differential in certain distinguished triangles of coefficients/functors over some categories, and make these functors explicit in terms of Tits building and Ash-Rudolph's modular symbols. To accomplish this, we shall use Quillen's categorical homotopy theory intensively and introduce the notion of extended (modular) symbols which is equivalent to Ash-Rudolph's via the suspension of Tits buildings.
13

Conjecture de brumer-stark non abélienne / A non-abelian brumer-Stark conjecture

Dejou, Gaëlle 24 June 2011 (has links)
La recherche d’annulateurs du groupe des classes d’idéaux d’une extension abélienne de Q est un sujet classique et remonte à des travaux de Kummer et Stickelberger. La conjecture de Brumer-Stark porte sur les extensions abéliennes de corps de nombres et prédit qu’un élément de l’anneau de groupe du groupe de Galois, appelé élément de Brumer-Stickelberger, est un annulateur du groupe des classes de l’extension. De plus, elle stipule que les générateurs des idéaux principaux obtenus possèdent des propriétés bien particulières. Cette thèse est dédiée à la généralisation de cette conjecture aux extensions de corps de nombres galoisiennes mais non abéliennes. Dans un premier temps, nous nous focalisons sur l’étude de l’analogue non abélien de l’élément de Brumer, nécessaire à l’établissement d’une conjecture non abélienne. La seconde partie est consacrée à l’énoncé de la conjecture de Brumer-Stark non abélienne et à ses reformulations, ainsi qu’aux propriétés qu’elle vérifie. Nous nous intéressons notamment aux propriétés de changement d’extension. Nous étudions ensuite le cas spécifique des extensions dont le groupe de Galois possède un sous-groupe abélien H distingué d’indice premier. Sous la validité de la conjecture de Brumer-Stark associée à certaines extensions abéliennes, nous en déduisons deux résultats suivant la parité du cardinal de H : dans le cas impair, nous démontrons la conjecture de Brumer-Stark non abélienne, et dans le cas pair, nous établissons un résultat d’abélianité permettant d’obtenir, sous des hypothèses supplémentaires, la conjecture non abélienne. Enfin nous effectuons des vérifications numériques de la conjecture non abélienne permettant de démontrer cette conjecture dans les exemples testés. / Finding annihilators of the ideal class group of an abelian extension of Q is a classical subject which goes back to work of Kummer and Stickelberger. The Brumer-Stark conjecture deals with abelian extensions of number fields and predicts that a group ring element, called the Brumer-Stickelberger element, annihilates the ideal class group of the extension under consideration. Moreover it specifies that the generators thus obtained have special properties. The aim of this work is to generalize this conjecture to non-abelian Galois extensions. We first focus on the study of a non-abelian analogue of the Brumer element, necessary to establish a non-abelian generalization of the conjecture. The second part is devoted to the statement of our non-abelian conjecture, and the properties it satisfies. We are particularly interested in extension change properties. We then study the specific case of extensions whose Galois group has an abelian normal subgroup H of prime index. If the Brumer-Stark conjecture associated to certain abelian subextensions holds, we prove two results according to the parity of the cardinal of H : in the odd case, we get the non-abelian Brumer-Stark conjecture, and in the even case, we establish an abelianity result implying under additional hypotheses the proof of the non-abelian conjecture. Thanks to PARI-GP, we finally do some numerical verifications of the nonabelian conjecture, proving its validity in the tested examples.
14

Sur quelques questions en théorie d'Iwasawa / On some questions in Iwasawa theory

Villanueva Gutiérrez, José Ibrahim 30 June 2017 (has links)
Ce travail de thèse comporte l'étude des invariants logarithmiques le long des $l^{d}$-extensions et se compose de trois parties étroitement reliées. La première partie est un compendium sur les divers approches à l'arithmétique algorithmique, c'est à dire l'étude générale des invariants logarithmiques. En particulier on y présente quatre définitions équivalentes du groupe de classes logarithmiques et on y démontre leur équivalence. On donne aussi une preuve alternative d'un théorème d'Iwasawa de type logarithmique. La deuxième partie s'interprète comme un addendum historique sur l'étude du groupe de classes logarithmiques le long des $l$-extensions. On démontre que sous la conjecture de Gross-Kuz'min la théorie d'Iwasawa peut être bien employée pour l'étude du cas non-cyclotomique. Ainsi, on démontre des relations entre les invariants $mu$ et $lambda$ correspondant au $ell$-groupe de classes avec les invariants $ilde{mu}$ et $ilde{lambda}$ attachés aux groupes de classes logarithmiques. La troisième partie comporte l'étude du module d'Iwasawa logarithmique pour des $l^{d}$-extensions, c'est à dire du groupe de Galois $X=Gal(L_{d}/K_{d})$ de la $ell$-extension maximale abélienne logarithmiquement non-ramifiée du compositum $K_{d}$ des différentes $l$-extensions d'un corps de nombres $K$. On démontre sous la conjecture de Gross-Kuz'min, de façon analogue au cas classique, que $X$ est bien un module noethérien et de torsion sous l'algèbre d'Iwasawa de $K_{d}$. Ainsi, on déduit des relations entre les invariants logarithmiques $ilde{mu}$ et $ilde{lambda}$ des $l$-extensions de $K$ qui satisfont une hypothèse de décomposition. / This work is concerned with the study of logarithmic invariants on $l^{d}$-extensions and is subdivided in three pieces, which are closely related to each other. The first part is a compendium of the different approaches to logarithmic arithmetic, that is the study of the logarithmic invariants. In particular we show the equivalence between the four definitions of the logarithmic class group existing in the literature. Also we give an alternative proof of an Iwasawa logarithmic result. The second part can be thought as an historic addendum on the study of the logarithmic class group over $l$-extensions. Assuming the Gross-Kuz'min conjecture we show that the logarithmic class group can be studied in the Iwasawa setting for non-cyclotomic extensions. We also give relations between the classical $mu$ and $lambda$ invariants and the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ attached to the logarithmic class groups. The third part studies the properties of the Iwasawa logarithmic module for $l^{d}$-extensions, that is the Galois group $X=Gal(L_{d}/K_{d})$ of the maximal abelian $ell$-extension logarithmically unramified of the compositum $K_{d}$ of the different $l$-extensions of a number field $K$. Assuming the Gross-Kuz'min conjecture we show that $X$ is a noetherian torsion module over the Iwasawa algebra of $K_{d}$. We also deduce relations between the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ of the $l$-extensions of $K$ which satisfy a splitting condition.
15

G-graphs and Expander graphs / G-graphes et les graphes d’expansion

Badaoui, Mohamad 30 March 2018 (has links)
L’utilisation de l’algèbre pour résoudre des problèmes de graphes a conduit au développement de trois branches : théorie spectrale des graphes, géométrie et combinatoire des groupes et études des invariants de graphes. La notion de graphe d’expansions (invariant de graphes) est relativement récente, elle a été développée afin d’étudier la robustesse des réseaux de télécommunication. Il s’avère que la construction de familles infinies de graphes expanseurs est un problème difficile. Cette thèse traite principalement de la construction de nouvelles familles de tels graphes. Les graphes expanseurs possèdent des nombreuses applications en informatique, notamment dans la construction de certains algorithmes, en théorie de la complexité, sur les marches aléatoires (random walk), etc. En informatique théorique, ils sont utilisés pour construire des familles de codes correcteurs d’erreur. Comme nous l’avons déjà vu les familles d’expanseurs sont difficiles à construire. La plupart des constructions s'appuient sur des techniques algébriques complexes, principalement en utilisant des graphes de Cayley et des produit Zig-Zag. Dans cette thèse, nous présentons une nouvelle méthode de construction de familles infinies d’expanseurs en utilisant les G-graphes. Ceux-ci sont en quelque sorte une généralisation des graphes de Cayley. Plusieurs nouvelles familles infinies d’expanseurs sont construites, notamment la première famille d’expanseurs irréguliers. / Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graphs that have strongconnectivity properties. Expanders constructions have found extensive applications in bothpure and applied mathematics. Although expanders exist in great abundance, yet their explicitconstructions, which are very desirable for applications, are in general a hard task. Mostconstructions use deep algebraic and combinatorial approaches. Following the huge amountof research published in this direction, mainly through Cayley graphs and the Zig-Zagproduct, we choose to investigate this problem from a new perspective; namely by usingG-graphs theory and spectral hypergraph theory as well as some other techniques. G-graphsare like Cayley graphs defined from groups, but they correspond to an alternative construction.The reason that stands behind our choice is first a notable identifiable link between thesetwo classes of graphs that we prove. This relation is employed significantly to get many newresults. Another reason is the general form of G-graphs, that gives us the intuition that theymust have in many cases such as the relatively high connectivity property.The adopted methodology in this thesis leads to the identification of various approaches forconstructing an infinite family of expander graphs. The effectiveness of our techniques isillustrated by presenting new infinite expander families of Cayley and G-graphs on certaingroups. Also, since expanders stand in no single stem of graph theory, this brings us toinvestigate several closely related threads from a new angle. For instance, we obtain newresults concerning the computation of spectra of certain Cayley and G-graphs, and theconstruction of several new infinite classes of integral and Hamiltonian Cayley graphs.

Page generated in 0.0468 seconds