Spelling suggestions: "subject:"théorie dde l'apprentissage statistique"" "subject:"théorie dee l'apprentissage statistique""
1 |
Contributions à l'apprentissage statistique dans les modèles parcimonieuxAlquier, Pierre 06 December 2013 (has links) (PDF)
Ce mémoire d'habilitation a pour objet diverses contributions à l'estimation et à l'apprentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les différentes méthodes d'estimation populaires dans ce modèle, on présente de nouveaux résultats tirés de (Alquier & Lounici 2011) pour des estimateurs agrégés. La seconde partie a essentiellement pour objet d'étendre les résultats de la première partie à l'estimation de divers modèles de séries temporelles (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Enfin, la troisième partie présente plusieurs extensions à des modèles non param\étriques ou à des applications plus spécifiques comme la statistique quantique (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). Dans chaque section, des estimateurs sont proposés, et, aussi souvent que possible, des inégalités oracles optimales sont établies.
|
2 |
Inférence Adaptative, Inductive et Transductive, pour l'Estimation de la Regression et de la DensitéAlquier, Pierre 08 December 2006 (has links) (PDF)
Cette thèse a pour objet l'étude des<br />propriétés statistiques d'algorithmes d'apprentissage dans le cas de<br />l'estimation de la régression et de la densité. Elle est divisée en<br />trois parties.<br /><br />La première partie consiste en une généralisation des théorèmes<br />PAC-Bayésiens, sur la classification, d'Olivier Catoni, au cas de la régression avec une fonction de perte<br />générale.<br /><br />Dans la seconde partie, on étudie plus particulièrement le cas de la<br />régression aux moindres carrés et on propose un nouvel algorithme de<br />sélection de variables. Cette méthode peut être appliquée notamment<br />au cas d'une base de fonctions orthonormales, et conduit alors à des<br />vitesses de convergence optimales, mais aussi au cas de fonctions de<br />type noyau, elle conduit alors à une variante des méthodes dites<br />"machines à vecteurs supports" (SVM).<br /><br />La troisième partie étend les résultats de la seconde au cas de<br />l'estimation de densité avec perte quadratique.
|
Page generated in 0.1248 seconds