Spelling suggestions: "subject:"théorie dess deux stochastique"" "subject:"théorie dess ceux stochastique""
1 |
Optimisation stochastique avec contraintes en probabilités et applications / Chance constrained problem and its applicationsPeng, Shen 17 June 2019 (has links)
L'incertitude est une propriété naturelle des systèmes complexes. Les paramètres de certains modèles peuvent être imprécis; la présence de perturbations aléatoires est une source majeure d'incertitude pouvant avoir un impact important sur les performances du système. Dans cette thèse, nous étudierons les problèmes d’optimisation avec contraintes en probabilités dans les cas suivants : Tout d’abord, nous passons en revue les principaux résultats relatifs aux contraintes en probabilités selon trois perspectives: les problèmes liés à la convexité, les reformulations et les approximations de ces contraintes, et le cas de l’optimisation distributionnellement robuste. Pour les problèmes d’optimisation géométriques, nous étudions les programmes avec contraintes en probabilités jointes. A l’aide d’hypothèses d’indépendance des variables aléatoires elliptiquement distribuées, nous déduisons une reformulation des programmes avec contraintes géométriques rectangulaires jointes. Comme la reformulation n’est pas convexe, nous proposons de nouvelles approximations convexes basées sur la transformation des variables ainsi que des méthodes d’approximation linéaire par morceaux. Nos résultats numériques montrent que nos approximations sont asymptotiquement serrées. Lorsque les distributions de probabilité ne sont pas connues à l’avance, le calcul des bornes peut être très utile. Par conséquent, nous développons quatre bornes supérieures pour les contraintes probabilistes individuelles, et jointes dont les vecteur-lignes de la matrice des contraintes sont indépendantes. Sur la base des inégalités de Chebyshev, Chernoff, Bernstein et de Hoeffding, nous proposons des approximations déterministes. Des conditions suffisantes de convexité. Pour réduire la complexité des calculs, nous reformulons les approximations sous forme de problèmes d'optimisation convexes solvables basés sur des approximations linéaires et tangentielles par morceaux. Enfin, des expériences numériques sont menées afin de montrer la qualité des approximations étudiées sur des données aléatoires. Dans certains systèmes complexes, la distribution des paramètres aléatoires n’est que partiellement connue. Pour traiter les incertitudes dans ces cas, nous proposons un ensemble d'incertitude basé sur des données obtenues à partir de distributions mixtes. L'ensemble d'incertitude est construit dans la perspective d'estimer simultanément des moments d'ordre supérieur. Ensuite, nous proposons une reformulation du problème robuste avec contraintes en probabilités en utilisant des données issues d’échantillonnage. Comme la reformulation n’est pas convexe, nous proposons des approximations convexes serrées basées sur la méthode d’approximation linéaire par morceaux sous certaines conditions. Pour le cas général, nous proposons une approximation DC pour dériver une borne supérieure et une approximation convexe relaxée pour dériver une borne inférieure pour la valeur de la solution optimale du problème initial. Enfin, des expériences numériques sont effectuées pour montrer que les approximations proposées sont efficaces. Nous considérons enfin un jeu stochastique à n joueurs non-coopératif. Lorsque l'ensemble de stratégies de chaque joueur contient un ensemble de contraintes linéaires stochastiques, nous modélisons ces contraintes sous la forme de contraintes en probabilité jointes. Pour chaque joueur, nous formulons les contraintes en probabilité dont les variables aléatoires sont soit normalement distribuées, soit elliptiquement distribuées, soit encore définies dans le cadre de l’optimisation distributionnellement robuste. Sous certaines conditions, nous montrons l’existence d’un équilibre de Nash pour ces jeux stochastiques. / Chance constrained optimization is a natural and widely used approaches to provide profitable and reliable decisions under uncertainty. And the topics around the theory and applications of chance constrained problems are interesting and attractive. However, there are still some important issues requiring non-trivial efforts to solve. In view of this, we will systematically investigate chance constrained problems from the following perspectives. As the basis for chance constrained problems, we first review some main research results about chance constraints in three perspectives: convexity of chance constraints, reformulations and approximations for chance constraints and distributionally robust chance constraints. For stochastic geometric programs, we formulate consider a joint rectangular geometric chance constrained program. With elliptically distributed and pairwise independent assumptions for stochastic parameters, we derive a reformulation of the joint rectangular geometric chance constrained programs. As the reformulation is not convex, we propose new convex approximations based on the variable transformation together with piecewise linear approximation methods. Our numerical results show that our approximations are asymptotically tight. When the probability distributions are not known in advance or the reformulation for chance constraints is hard to obtain, bounds on chance constraints can be very useful. Therefore, we develop four upper bounds for individual and joint chance constraints with independent matrix vector rows. Based on the one-side Chebyshev inequality, Chernoff inequality, Bernstein inequality and Hoeffding inequality, we propose deterministic approximations for chance constraints. In addition, various sufficient conditions under which the aforementioned approximations are convex and tractable are derived. To reduce further computational complexity, we reformulate the approximations as tractable convex optimization problems based on piecewise linear and tangent approximations. Finally, based on randomly generated data, numerical experiments are discussed in order to identify the tight deterministic approximations. In some complex systems, the distribution of the random parameters is only known partially. To deal with the complex uncertainties in terms of the distribution and sample data, we propose a data-driven mixture distribution based uncertainty set. The data-driven mixture distribution based uncertainty set is constructed from the perspective of simultaneously estimating higher order moments. Then, with the mixture distribution based uncertainty set, we derive a reformulation of the data-driven robust chance constrained problem. As the reformulation is not a convex program, we propose new and tight convex approximations based on the piecewise linear approximation method under certain conditions. For the general case, we propose a DC approximation to derive an upper bound and a relaxed convex approximation to derive a lower bound for the optimal value of the original problem, respectively. We also establish the theoretical foundation for these approximations. Finally, simulation experiments are carried out to show that the proposed approximations are practical and efficient. We consider a stochastic n-player non-cooperative game. When the strategy set of each player contains a set of stochastic linear constraints, we model the stochastic linear constraints of each player as a joint chance constraint. For each player, we assume that the row vectors of the matrix defining the stochastic constraints are pairwise independent. Then, we formulate the chance constraints with the viewpoints of normal distribution, elliptical distribution and distributionally robustness, respectively. Under certain conditions, we show the existence of a Nash equilibrium for the stochastic game.
|
2 |
Métadynamiques en Cognition Sociale<br />Quelle définition de meilleur est la meilleure ?Chavalarias, David 25 October 2004 (has links) (PDF)
Quels sont les principes fondateurs de l'auto-organisation des sociétés humaines ? Produits d'une évolution culturelle rapide, qui a pris le pas sur l'évolution biologique, celles-ci réclament une approche par des formalismes radicalement différents de ceux utilisés généralement dans l'étude des autres sociétés animales.<br /><br /><br />Concrètement, la modélisation des rapports entre individus et collectif considère le plus souvent des agents qui peuvent être représentés sous la forme d'une hiérarchie de règles, chacune se plaçant en position méta par rapport aux règles du niveau inférieur. Celles-ci peuvent s'interpréter, selon les niveaux, comme des règles de comportement, des règles de décision, des règles de transmission culturelle ou génétique.<br /><br />L'émergence de régularités au niveau collectif peut alors s'interpréter comme la sélection d'une distribution particulière sur l'ensemble des règles et métarègles définissant les agents. Dès lors, le problème de l'auto-organisation dans les systèmes économiques et sociaux se reformule autour de la question suivante : « Peut-on endogénéiser les distributions des métarègles de comportement de manière à ce qu'elles soient le produit des dynamiques collectives qu'elles définissent ? ».<br /><br />Nous montrons dans cette thèse que la prise en compte, dans les modèles formels, de la spécificité de l'imitation humaine permet de répondre positivement à cette question, un point essentiel étant qu'une règle d'imitation peut être sa propre métarègle. Nous proposons ainsi un cadre formel pour l'étude de sociétés d'agents mimétiques auto-organisées, les jeux métamimétiques ; le concept d'équilibre correspondant est alors l'état contrefactuellement stable : aucun agent ne peut s'imaginer mieux qu'il n'est en se mettant contrefactuellement à la place de l'un de ses voisins. Nous étudions ensuite les propriétés de ces jeux en prenant comme champs d'application le problème de l'émergence de la coopération dans un dilemme de prisonnier spatialisé. Nous montrons au passage, que cette approche permet d'échapper au dilemme.<br /><br /><br />Plus généralement, nous nous plaçons dans le cadre de la théorie des jeux stochastiques et nous explicitons le rôle structurant des perturbations dans ce type de système dynamique, les structures spatio-temporelles émergentes étant le produit du couplage entre la dynamique endogène des systèmes métamimétiques et la structure interne des perturbations. En rupture avec l'approche traditionnelle, ceci nous amène à interpréter l'hétérogénéité auto-organisée des systèmes sociaux humains comme une différenciation par un processus de co-évolution d'une multiplicité de critères possibles, plutôt que par un processus d'optimisation global d'un critère unique.
|
3 |
Métadynamiques en cognition sociale. Quelle définition de meilleur est la meilleure ?Chavalarias, David 25 October 2004 (has links) (PDF)
Quels sont les principes fondateurs de l'auto-organisation des sociétés humaines ? Produits d'une évolution culturelle rapide, qui a pris le pas sur l'évolution biologique, celles-ci réclament une approche par des formalismes radicalement différents de ceux utilisés généralement dans l'étude des autres sociétés animales. Concrètement, la modélisation des rapports entre individus et collectif considère le plus souvent des agents qui peuvent être représentés sous la forme d'une hiérarchie de règles, chacune se plaçant en position méta par rapport aux règles du niveau inférieur. Celles-ci peuvent s'interpréter, selon les niveaux, comme des règles de comportement, des règles de décision, des règles de transmission culturelle ou génétique. L'émergence de régularités au niveau collectif peut alors s'interpréter comme la sélection d'une distribution particulière sur l'ensemble des règles et métarègles définissant les agents. Dès lors, le problème de l'auto-organisation dans les systèmes économiques et sociaux se reformule autour de la question suivante : « Peut-on endogénéiser les distributions des métarègles de comportement de manière à ce qu'elles soient le produit des dynamiques collectives qu'elles définissent ? ». Nous montrons dans cette thèse que la prise en compte, dans les modèles formels, de la spécificité de l'imitation humaine permet de répondre positivement à cette question, un point essentiel étant qu'une règle d'imitation peut être sa propre métarègle. Nous proposons ainsi un cadre formel pour l'étude de sociétés d'agents mimétiques auto-organisées, les jeux métamimétiques ; le concept d'équilibre correspondant est alors l'état contrefactuellement stable : aucun agent ne peut s'imaginer mieux qu'il n'est en se mettant contrefactuellement à la place de l'un de ses voisins. Nous étudions ensuite les propriétés de ces jeux en prenant comme champs d'application le problème de l'émergence de la coopération dans un dilemme de prisonnier spatialisé. Nous montrons au passage, que cette approche permet d'échapper au dilemme. Plus généralement, nous nous plaçons dans le cadre de la théorie des jeux stochastiques et nous explicitons le rôle structurant des perturbations dans ce type de système dynamique, les structures spatio-temporelles émergentes étant le produit du couplage entre la dynamique endogène des systèmes métamimétiques et la structure interne des perturbations. En rupture avec l'approche traditionnelle, ceci nous amène à interpréter l'hétérogénéité auto-organisée des systèmes sociaux humains comme une différenciation par un processus de co-évolution d'une multiplicité de critères possibles, plutôt que par un processus d'optimisation global d'un critère unique.
|
Page generated in 0.1275 seconds