• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 1
  • Tagged with
  • 31
  • 31
  • 19
  • 18
  • 16
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Les pavages en géométrie projective de dimension 2 et 3

Marquis, Ludovic 29 May 2009 (has links) (PDF)
Dans ma thèse, je me suis intéressé à l'étude des sous-groupes discrets $\G$ de $\s$ (resp. de $ßs^{\pm}_{4}(\R)$) qui préservent un ouvert proprement convexe $\O$ de l'espace projectif réel $\P(\R)$ (resp. $\PP^3(\R)$). En dimension 2, j'ai caractérisé le fait que la surface quotient $\Quo$ est de volume fini de différentes façons, notamment à l'aide l'holonomie des pointes de la surface $S$, ou de l'ensemble limite du groupe $\G$. Cette étude m'a permis de montrer que lorsque le quotient $\Quo$ est de volume fini, alors l'ouvert proprement convexe $\O$ est strictement convexe et son bord $\partial \O$ est $C^1$. Enfin, j'ai montré que l'espace des modules des structures projectives proprement convexes de volume fini, sur une surface (de caractéristique d'Euler strictement négative) de genre $g$ et à $p$ pointes est homéomorphe à une boule de dimension $16g-16+6p$. En dimension 3, je me suis intéressé à l'espace des modules des structures projectives proprement convexes sur les 3-orbifolds de Coxeter compact. J'ai dû faire une hypothèse sur la forme de l'orbifold pour montrer que l'espace des modules est une réunion de $n$ boules de dimension $d$, où les entiers $n$ et $d$ se calculent à l'aide de la combinatoire de l'orbifold.
2

Automorphismes extérieurs du groupe de Burnside libre

Coulon, Rémi 14 June 2010 (has links) (PDF)
Le groupe de Burnside libre d'exposant n, B(r,n), est le quotient du groupe libre de rang r par le sous-groupe engendré par les puissance n-ièmes de tous ses éléments. Ce groupe fut introduit en 1902 par W. Burnside qui demandait si un tel objet était nécessairement fini. Depuis les travaux de P.S. Novikov et S.I. Adian à la fin des années soixante, on sait que, pour des exposants suffisamment grands, la réponse est négative. Dans cette thèse on s'intéresse aux automorphismes extérieurs de B(r,n). En adaptant l'approche géométrique de la théorie de la petite simplification développée par T. Delzant et M. Gromov, on exhibe une large classe d'automorphismes du groupe libre qui induisent des éléments d'ordre infini de Out(B(r,n)). On montre aussi que Out(B(r,n)) contient des sous-groupes libres et abéliens libres.
3

Fragmentation et propriétés algébriques des groupes d'homéomorphismes

Militon, Emmanuel 26 October 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à diverses propriétés algébriques des groupes d'homéomorphismes et de difféomorphismes de variétés. On appelle fragmentation la possibilité d'écrire un homéomorphisme en tant que composé d'homéomorphismes supportés dans des boules. Tout d'abord, nous étudions la longueur des commutateurs sur le groupe des homéomorphismes du tore et de l'anneau, ainsi que la norme de fragmentation, qui associe à tout homéomorphisme le nombre minimal de facteurs nécessaires pour écrire cet homéomorphisme en tant que composé d'homéomorphismes supportés dans des boules. Dans une deuxième partie de la thèse, nous abordons una autre propriété algébrique des groupes d'homéomorphismes et de difféomorphismes : la distorsion. Celle-ci est reliée de manière surprenante à des propriétés de fragmentation des homéomorphismes.
4

Applications de la théorie géométrique des invariants à la géométrie diophantienne

Maculan, Marco 07 December 2012 (has links) (PDF)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta.
5

Analysis of geometric and functional shapes with extensions of currents : applications to registration and atlas estimation / Analyse de formes géométriques et fonctionnelles via des extensions de la notion de courant : applications au recalage difféomorphique et à l'estimation d'atlas en anatomie numérique

Charon, Nicolas 14 November 2013 (has links)
Cette thèse s'articule autour de problématiques liées au domaine récent de l'anatomie numérique dont l'objet est de fournir des cadres à la fois mathématiques et numériques pour estimer la variabilité statistique au sein de populations de formes géométriques. Dans ce travail, on s'intéresse dans un premier temps au cas d'ensemble de courbes, de surfaces ou sous-variétés avec pour premier objectif de définir une représentation et des termes d'attache aux données adéquats pour les problèmes de recalage par grande déformation (LDDMM). Les précédentes approches reposant sur le cadre des courants qui traite le cas d'objets orientés, nous proposons une extension pour des formes géométriques non-orientées via la représentation des varifolds issue de la théorie géométrique de la mesure. Dans un second temps, ce travail se penche sur l'étude d'objets géométrico-fonctionnels aussi baptisés 'formes fonctionnelles', c'est à dire de fonctions ou de signaux définis sur des supports géométriques variables entre les individus. On définit notamment la notion de métamorphoses géométrico-fonctionnelles pour généraliser celle de déformation à ce contexte ainsi que la notion de courant fonctionnel pour mesurer la dissimilarité entre deux formes fonctionnelles. Ceci débouche assez naturellement sur un tout nouveau cadre mathématique et algorithmique permettant d'étendre les outils usuels de recalage difféomorphique. Enfin, on s'intéresse à la situation plus générale de l'estimation et l'analyse d'atlas pour des ensembles de telles structures en proposant en particulier une formulation mathématique bien posée pour de tels problèmes ainsi qu'un algorithme d'estimation simultanée géométrie/fonction puis des outils pour l'analyse statistique et la classification. Ces méthodes sont illustrées sur quelques jeux de données synthétiques et d'autres issues de l'imagerie biomédicale. / This thesis addresses several questions related to the recent field of computational anatomy. Broadly speaking, computational anatomy intends to analyse shape variability among populations of anatomical structures. In this work, we are focused, in the first place, on the case of datasets of curves, surfaces and more generally submanifolds. Our goal is to provide a mathematical and numerical setting to build relevant data attachment terms between those objects in the purpose of embedding it into the large diffeomorphic metric mapping (LDDMM) model for shape registration. Previous approaches have been relying on the concept of currents that represents oriented submanifolds. We first propose an extension of these methods to the situation of non-oriented shapes by adapting the concept of varifolds from geometric measure theory. In the second place, we focus on the study of geometrico-functional structures we call 'functional shapes' (or fshapes), which combine varying geometries across individuals with signal functions defined on these shapes. We introduce the new notion of fshape metamorphosis to generalize the idea of deformation groups in the pure geometrical case. In addition, we define the extended setting of 'functional currents' to quantify dissimilarity between fshapes and thus perform geometrico-functional registration between such objects. Finally, in the last part of the thesis, we move on to the issue of analyzing entire groups of individuals (shapes or fshapes) together. In that perspective, we introduce an atlas estimation variational formulation that we prove to be mathematically well-posed and build algorithms to estimate templates and atlases from populations, as well as tools to perform statistical analysis and classification. All these methods are evaluated on several applications to synthetic datasets on the one hand and real datasets from biomedical imaging on the other.
6

Applications de la théorie géométrique des invariants à la géométrie diophantienne / Applications of geometric invariant theory to diophantine geometry

Maculan, Marco 07 December 2012 (has links)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta. / Geometric invariant theory is a central subject in nowadays' algebraic geometry : developed by Mumford in the early sixties, it enhanced the knowledge of projective varieties through the construction of moduli spaces. During the last twenty years, interactions between geometric invariant theory and arithmetic geometric --- more precisely, height theory and Arakelov geometry --- have been exploited by several authors (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). In this thesis we firstly study in a systematic way how geometric invariant theory fits in the framework of Arakelov geometry; then we show that these results give a new geometric approach to questions in diophantine approximation, proving Roth's Theorem and its recent generalizations by Lang, Wirsing and Vojta.
7

Problèmes de transport optimal avec pénalisation en gradient / Optimal transport problems with gradient penalization

Louet, Jean 02 July 2014 (has links)
Le problème du transport optimal, originellement introduit par Monge au 18ème siècle, consiste à minimiser l'énergie nécessaire au déplacement d'une masse dont la répartition est donnée vers une autre masse dont la répartition est elle aussi donnée; mathématiquement, cela se traduit par : trouver le minimiseur de l'intégrale de c(x,T(x)) (où c est le coût de transport de x vers T(x)) parmi toutes les applications T à mesure image prescrite.Cette thèse est consacrée à l'étude de problèmes variationnels similaires où l'on fait intervenir la matrice jacobienne de la fonction de transport, c'est-à-dire que le coût dépend de trois variables c(x,T(x),DT(x)) ; il s'agit typiquement de rajouter l'intégale de |DT(x)|^2 à la fonctionnelle afin d'obtenir une pénalisation Sobolev. Ce type de problème trouve ses motivations en mécanique des milieux continus, élasticité incompressible ou en analyse de forme et appelle d'un point de vue mathématique une approche totalement différente de celle du problème de transport usuel.Les questions suivantes sont envisagées :- bonne définition du problème, notamment de l'énergie de Dirichlet, via les espaces de Sobolev par rapport à une mesure, et résultats d'existence de minimiseurs ;- caractérisation de ces minimiseurs : optimalité du transport croissant sur la droite réelle, et approche du type équation d'Euler-Lagrange en dimension quelconque ;- sélection d'un minimiseur via une procédure de pénalisation du type Gamma-convergence (l'énergie de Dirichlet est mutipliée par un petit paramètre) lorsque le coût de transport est le coût de Monge donné par la distance, pour lequel l'application de transport optimale n'est pas unique ;- autres approches du problème et perspectives : formulation dynamique du type Benamou-Brenier, et formulation duale similaire à celle de Kantorovitch dans le cas du problème du transport optimal usuel. / The optimal transportation problem was originally introduced by Monge in the 18th century; it consists in minimizing the total energy of the displacement of a given repartition of mass onto another given repartition of mass. This is mathematically expressed by: find the minimizer of the integral of c(x,T(x)) (where c(x,T(x)) is the cost to send x onto T(x)) among the maps T with prescribed image measure.This thesis is devoted to similar variational problems, which involve the Jacobian matrix of the transport map, meaning that the cost depends on three variables c(x,T(x),DT(x)); we typically add the Dirichlet energy to the transport functional in view to obtain a Sobolev-type penalization. This kind of constraints finds its motivations in continuum mechanics, incompressible elasticity or shape analysis, and a quite different mathematical approach than in the usual theory of optimal transportation is needed.We consider the following questions:- proper definition of the problem, in particular of the Dirichlet energy, thanks to the theory of Sobolev spaces with respect to a measure, and existence results;- characterizations of these minimizers: optimality of the monotone transport map on the real line, and Euler-Lagrange-like approach in any dimension;- selection of a minimizer via a Gamma-convergence-like penalization procedure (we multiply the Dirihlet energy with a vanishing positive parameter) where the transport cost is the Monge cost given by the distance (for which the optimal transport map is not unique);- other related problems and perspectives: dynamic Benamou-Brenier-like formulation, and dual Kantorovich-like formulation.
8

Groupes hyperboliques et logique du premier ordre / Hyperbolic groups and first-order logic

André, Simon 15 July 2019 (has links)
Deux groupes sont dits élémentairement équivalents s'ils satisfont les mêmes énoncés du premier ordre dans le langage des groupes. Aux environs de l'année 1945, Tarski posa la question suivante, connue désormais comme le problème de Tarski : les groupes libres non abéliens sont-ils élémentairement équivalents ? Une réponse positive à cette fameuse question fut apportée plus d'un demi-siècle plus tard par Sela, et en parallèle par Kharlampovich et Myasnikov, comme le point d'orgue de deux volumineuses séries de travaux. Dans la foulée, Sela généralisa aux groupes hyperboliques sans torsion, dont les groupes libres sont des représentants emblématiques, les méthodes de nature géométrique qu'il avait précédemment introduites à l'occasion de son travail sur le problème de Tarski. Les résultats rassemblés ici s'inscrivent dans cette lignée, en s'en démarquant toutefois dans la mesure où ils traitent des théories du premier ordre des groupes hyperboliques en présence de torsion. Dans un premier chapitre, on démontre, entre autres, que tout groupe de type fini qui est élémentairement équivalent à un groupe hyperbolique est lui-même hyperbolique. On démontre ensuite que les groupes virtuellement libres sont presque homogènes, ce qui signifie que deux éléments qui sont indiscernables du point de vue de la logique du premier ordre sont dans la même orbite sous l'action du groupes des automorphismes du groupe ambiant, à une indétermination finie près. Enfin, on donne une classification complète des groupes virtuellement libres de type fini du point de l'équivalence élémentaire à deux quantificateurs. / Two groups are said to be elementarily equivalent if they satisfy the same first-order sentences in the language of groups, that is the same mathematical statements whose variables are only interpreted as elements of a group. Around 1945, Tarski asked the following question : are non-abelian free groups elementarily equivalent? An affirmative answer to this famous Tarski's problem was given in 2006 by Sela and independently by Kharlampovich and Myasnikov, as the culmination of two voluminous series of papers. Then, Sela gave a classification of all finitely generated groups that are elementarily equivalent to a given torsion-free hyperbolic group. The results contained in the present thesis fall into this context and deal with first-order theories of hyperbolic groups with torsion. In the first chapter, we prove that any finitely generated group that is elementarily equivalent to a hyperbolic group is itself a hyperbolic group. Then, we prove that virtually free groups are almost homogeneous, meaning that elements are almost determined up to automorphism by their type, i.e. the first-order formulas they satisfy. In the last chapter, we give a complete classification of finitely generated virtually free groups up to elementary equivalence with two quantifiers.
9

SUR LA REGULARITE DES MINIMISEURS DE MUMFORD-SHAH EN DIMENSION 3 ET SUPERIEURE

Lemenant, Antoine 02 June 2008 (has links) (PDF)
On étudie dans cette thèse certains aspects de la régularité de l'ensemble singulier d'un minimiseur pour la fonctionnelle de Mumford-Shah. On se place principalement en dimension 3 même si certains résultats fonctionnent encore en dimension supérieure. Dans une première partie on étudie les minimiseurs globaux dans R^N et on montre que si (u;K) est un minimiseur global et que si K est un cône assez régulier, alors u (modulo les constantes) est une fonction homogène de degré 1/2 dans R^N\K. Ceci nous permet de lier l'existence d'un minimiseur global et le spectre du laplacien sphérique dans la sphère unité privée de K. Une conséquence est qu'un secteur angulaire stricte ne peut pas être l'ensemble singulier d'un minimiseur global de Mumford-Shah dans R^3. Dans la deuxième partie on montre un théorème de régularité au voisinage des cônes minimaux P, Y et T. On montre que si K est proche (en distance) d'un Y ou d'un T dans une certaine boule, alors K est l'image C^1,alpha d'un P, Y ou d'un T dans une boule légèrement plus petite, ce qui généralise un théorème de L. Ambrosio, N. Fusco et D. Pallara [AFP07]. Les techniques employées ne sont pas exclusives à la dimension 3 et devraient permettre de démontrer des résultats analogues en toute dimension pour un minimiseur de Mumford-Shah, dès lors qu'un résultat de régularité sur les ensembles presque minimaux existerait.
10

Méthodes variationnelles pour l'étude de milieux dissipatifs : applications en rupture, endommagement et plasticité

Babadjian, Jean-François 25 March 2013 (has links) (PDF)
Les travaux présentés dans ce mémoire portent sur l'analyse mathématique de modèles dissipatifs en mécanique des milieux continus. Une attention est portée sur des modèles variationnels de mécanique de la rupture, d'endommagement et de plasticité. Par un souci d'unité, nous avons sélectionné le sous-ensemble maximal de nos travaux liés à ces sujets, en mettant ostensiblement de côté les articles \cite{BBDJ9,BBDJ10,BBDJ11,BBDJ13,BBDJ15} dont les domaines d'application diffèrent peu ou prou de ceux présentés ici. En particulier, les articles \cite{BBDJ10,BBDJ11} en collaboration avec V. Millot qui portent sur l'homogénéisation de fonctionnelles intégrales avec contrainte dans une variété relèvent plutôt de modèles de micromagnétisme. L'article \cite{BBDJ13} en collaboration avec E. Bonnetier et F. Triki traite de la diffraction d'ondes électromagnétiques sur des surfaces rugueuses par des méthodes d'équations intégrales et d'analyse spectrale. Enfin les articles \cite{BBDJ9} avec E. Zappale et H. Zorgati, et \cite{BBDJ15} avec F. Prinari et E. Zappale ont trait à l'étude de problèmes de réduction de dimension pour des énergies à croissance critique. Le cas d'énergies à croissance linéaire dans \cite{BBDJ9} relève d'une analyse dans l'espace des fonctions à variation bornée. Le cas d'énergies à croissance infinie dans \cite{BBDJ15} donne lieu à l'étude de fonctionnelles suprémales, liées au Laplacien infini, et est motivé par des modèles de rupture diélectrique. Dans le chapitre 1, il nous a semblé approprié de rappeler les notions de thermomécanique des milieux continus pour aboutir à la modélisation de milieux dissipatifs. Nous insistons plus particulièrement sur les milieux standards généralisés et les processus indépendants des vitesses. Ce chapitre est le dénominateur commun de la plupart des modèles d'élasticité, d'endommagement, de visco-plasticité, d'élasto-plasticité et de fracture évoqués dans la suite de ce mémoire. Le chapitre 2 est consacré à l'étude d'un modèle de mécanique de la rupture initialement introduit par Griffith et reformulé variationnellement par Francfort et Marigo. Nous présentons tout d'abord un résultat d'existence de solutions fortes dans le cas 2D antiplan. Nous nous concentrons ensuite sur l'étude d'une classe de matériaux particuliers que sont les films minces. Dans un premier temps, nous montrons comment divers modèles de membranes hétérogènes peuvent être obtenus à l'aide d'une analyse asymptotique par Gamma-convergence. Ensuite, nous nous intéressons à la croissance quasi-statique des fissures dans les films minces et établissons que les fissures sont asymptotiquement invariantes dans la direction de l'épaisseur. Enfin, nous étudions le décollement et la délamination de couches minces dont la modélisation repose soit sur la présence de défauts internes au milieu, soit sur un choix approprié de lois d'échelles sur la rigidité et la ténacité du milieu. Le chapitre 3 concerne l'étude de modèles d'endommagement. Une première partie est consacrée à la théorie de l'homogénéisation de fonctionnelles intégrales sur laquelle repose la compréhension de certains de ces modèles. A cet effet, nous rappelons les résultats classiques et exposons une approche par mesures de Young multi-échelles. Nous nous consacrons ensuite à l'étude des matériaux composites ainsi qu'à une propriété de localité pour cette classe de milieux homogénéisés. Dans une seconde partie, nous présentons un modèle d'évolution quasi-statique en endommagement brutal introduit par Francfort et Marigo, ainsi qu'un modèle de couplage entre l'endommagement et la rupture introduit par Fonseca et Francfort. Tels quels, ces modèles s'avèrent être mal posés, ce qui nécessite de définir une notion de solutions relaxées. A cet effet, nous établissons des résultats d'existence d'évolutions quasi-statiques homogénéisées. Dans une troisième partie, nous étudions une évolution par flot gradient d'un modèle d'endommagement non local. L'existence d'un flot gradient unilatéral pour la fonctionnelle d'Ambrosio-Tortorelli est démontrée à l'aide de la méthode des mouvements minimisants et la convergence vers les mouvements minimisants unilatéraux de la fonctionnelle de Mumford-Shah est établie. Le quatrième et dernier chapitre traite de modèles d'élasto-plasticité. Après avoir rappelé des résultats classiques sur la plasticité des métaux et des alliages, nous nous concentrons sur la plasticité des matériaux granulaires en mécanique des sols. Nous étudions tout d'abord un modèle de plasticité associée avec cap et une loi d'écrouissage sur celui-ci. En régime dynamique, nous montrons le caractère bien posé de ce modèle ainsi que la convergence vers un modèle de plasticité parfaite lorsque l'on fait tendre le cap à l'infini. En régime quasi-statique, nous établissons un résultat d'existence où le principe de travail maximal de Hill est remplacé par une identité d'énergie. Enfin nous étudions un modèle d'élasto-plasticité non-associée avec cap, pour lequel la loi de normalité n'est plus valable, en régime quasi-statique. Comme les solutions semblent présenter des discontinuités temporelles, nous établissons un résultat d'existence pour des temps convenablement remis à l'échelle. En annexe, nous regroupons l'ensemble des notations utilisées dans ce mémoire. Nous rappelons également un certain nombre de résultats classiques concernant notamment les fonctions à dérivées mesures et la Gamma-convergence.

Page generated in 0.0922 seconds