Spelling suggestions: "subject:"then hierarchical model"" "subject:"them hierarchical model""
41 |
Structure-function relationship in hierarchical model of brain networksZemanová, Lucia January 2007 (has links)
The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks. / Das Gehirn von Säugetieren stellt mit seinen zahlreichen, hochgradig vernetzten Neuronen ein natürliches Netzwerk von immenser Komplexität dar. In der jüngsten Vergangenheit sind die großflächige kortikale Konnektivitäten, sowohl unter strukturellen wie auch funktionalen Gesichtspunkten, in den Fokus der Forschung getreten. Die Verwendung von komplexe Netzwerke spielt hierbei eine entscheidende Rolle. In der vorliegenden Dissertation versuchen wir, das Verhältnis von struktureller und funktionaler Konnektivität durch Untersuchung der Synchronisationsdynamik anhand eines realistischen Modells der Konnektivität im Kortex einer Katze näher zu beleuchten. Wir modellieren die Kortexareale durch ein Subnetzwerk interagierender, erregbarer Neuronen (multilevel model) und durch ein Modell von Neuronenensembles (population model). Bei schwacher Kopplung zeigt das multilevel model eine biologisch plausible Dynamik und die Synchronisationsmuster lassen eine hierarchische Organisation der Netzwerkstruktur erkennen. Indem wir die dynamischen Cluster mit den topologischen Einheiten des Netzwerks vergleichen, sind wir in der Lage die Hirnareale, die an der Bewältigung komplexer Aufgaben beteiligt sind, zu identifizieren. Bei starker Kopplung im multilevel model und unter Verwendung des Ensemblemodells weist die Dynamik klare Oszillationen auf. Die Synchronisationsmuster werden hauptsächlich durch die Eingangsstärke an den einzelnen Knoten bestimmt, während die genaue Netzwerktopologie zweitrangig ist. Eine Erweiterung des Modells auf andere biologisch relevante Faktoren bestätigt die vorherigen Ergebnisse. Die Untersuchung der Synchronisation in einem multilevel model des Kortex ermöglicht daher tiefere Einblicke in die Zusammenhänge zwischen Netzwerktopologie und funktionaler Organisation in komplexen Hirn-Netzwerken.
|
42 |
Statistical Methods for the Analysis of Mass Spectrometry-based Proteomics DataWang, Xuan 2012 May 1900 (has links)
Proteomics serves an important role at the systems-level in understanding of biological functioning. Mass spectrometry proteomics has become the tool of choice for identifying and quantifying the proteome of an organism. In the most widely used bottom-up approach to MS-based high-throughput quantitative proteomics, complex mixtures of proteins are first subjected to enzymatic cleavage, the resulting peptide products are separated based on chemical or physical properties and then analyzed using a mass spectrometer. The three fundamental challenges in the analysis of bottom-up MS-based proteomics are as follows: (i) Identifying the proteins that are present in a sample, (ii) Aligning different samples on elution (retention) time, mass, peak area (intensity) and etc, (iii) Quantifying the abundance levels of the identified proteins after alignment. Each of these challenges requires knowledge of the biological and technological context that give rise to the observed data, as well as the application of sound statistical principles for estimation and inference. In this dissertation, we present a set of statistical methods in bottom-up proteomics towards protein identification, alignment and quantification.
We describe a fully Bayesian hierarchical modeling approach to peptide and protein identification on the basis of MS/MS fragmentation patterns in a unified framework. Our major contribution is to allow for dependence among the list of top candidate PSMs, which we accomplish with a Bayesian multiple component mixture model incorporating decoy search results and joint estimation of the accuracy of a list of peptide identifications for each MS/MS fragmentation spectrum. We also propose an objective criteria for the evaluation of the False Discovery Rate (FDR) associated with a list of identifications at both peptide level, which results in more accurate FDR estimates than existing methods like PeptideProphet.
Several alignment algorithms have been developed using different warping functions. However, all the existing alignment approaches suffer from a useful metric for scoring an alignment between two data sets and hence lack a quantitative score for how good an alignment is. Our alignment approach uses "Anchor points" found to align all the individual scan in the target sample and provides a framework to quantify the alignment, that is, assigning a p-value to a set of aligned LC-MS runs to assess the correctness of alignment. After alignment using our algorithm, the p-values from Wilcoxon signed-rank test on elution (retention) time, M/Z, peak area successfully turn into non-significant values.
Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical mass spectrometry-based proteomics data sets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of "presence / absence", we enable the selection of proteins not typically amendable to quantitative analysis; e.g., "one-state" proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence / absence analysis of a given data set in a principled way, resulting in a single list of selected proteins with a single associated FDR.
|
43 |
Étude des maxima de champs gaussiens corrélés.April, Samuel A. 07 1900 (has links)
Ce mémoire porte sur l’étude des maxima de champs gaussiens. Plus
précisément, l’étude portera sur la convergence en loi, la convergence du premier
ordre et la convergence du deuxième ordre du maximum d’une collection de variables
aléatoires gaussiennes. Les modèles de champs gaussiens présentés sont
le modèle i.i.d., le modèle hiérarchique et le champ libre gaussien. Ces champs
gaussiens diffèrent par le degré de corrélation entre les variables aléatoires. Le
résultat principal de ce mémoire sera que la convergence en probabilité du premier
ordre du maximum est la même pour les trois modèles. Quelques résultats de
simulations seront présentés afin de corroborer les résultats théoriques obtenus. / In this study, results about maxima of different Gaussian fields will be presented.
More precisely, results for the convergence of the first order of the maximum
of a set of Gaussian variables will be presented. Some results on the convergence
of the second order, and of the law will also be explained. The models presented
here are the Gaussian field of i.i.d. variables, the hierarchical model and the Gaussian
free fields model. These fields differ from one another by their correlation
structure. The main result of this study is that the first order convergence in
probability of the maximum is the same for the three models. Finally, numerical
simulations results will be presented to confirm theoretical results.
|
44 |
Étude des maxima de champs gaussiens corrélésApril, Samuel A. 07 1900 (has links)
No description available.
|
45 |
Genetické algoritmy – implementace paralelního zpracování / Genetic Algorithms - Implementation of MultiprocessingTuleja, Martin January 2018 (has links)
Genetic algorithms are modern algorithms intended to solve optimization problems. Inspiration originates in evolutionary principles in nature. Parallelization of genetic algorithms provides not only faster processing but also new and better solutions. Parallel genetic algorithms are also closer to real nature than their sequential counterparts. This paper describes the most used models of parallelization of genetic algorithms. Moreover, it provides the design and implementation in programming language Python. Finally, the implementation is verified in several test cases.
|
46 |
Using Sequential Sampling Models to Detect Selective Infuences: Pitfalls and Recommendations.Park, Joonsuk January 2019 (has links)
No description available.
|
47 |
A Bayesian Hierarchical Model for Studying Inter-Occasion and Inter-Subject Variability in PharmacokineticsLi, Xia 19 April 2011 (has links)
No description available.
|
48 |
The Relative Effects of Functional Diversity and Structural Complexity on Carbon Dynamics in Late-Successional, Northeastern Mixed Hardwood ForestsMyers, Samantha 03 April 2023 (has links) (PDF)
Late-successional forests provide a unique opportunity to explore adaptive management approaches that mitigate atmospheric carbon dioxide levels through carbon storage while also enhancing ecological resilience to novel climate and disturbances. Typical benchmarks for adaptive forest management include species diversity and structural complexity, which are widely considered to increase ecosystem stability and productivity. However, the role of functional trait diversity (e.g., variation in leaf and stem traits) in driving forest productivity and ecosystem resilience remains underexplored. We leveraged existing continuous forest inventory (CFI) data and collected local functional trait observations from CFI plots within late-successional forests in western Massachusetts to explore links between aboveground carbon storage and different types of forest diversity. We then fit a linear model within a Bayesian hierarchical framework applying functional diversity, species diversity, and structural complexity as predictors of live aboveground biomass (AGB) within CFI plots. Our framework integrates local functional trait information with database species mean trait values using a multivariate structure to account for inherent trait syndromes and estimate functional diversity in each plot. Across 626 plot-timepoints, we found that integrating individual functional trait information from co-located plots yielded the best predictions of live AGB. Contrary to expectations, functional diversity had a negative relationship with live AGB. Whereas plots with low functional diversity and higher AGB were dominated by mid-to-late successional hardwood species, plots with high functional diversity had more shade-intolerant species and lower AGB mediated by recent small-scale disturbances. Our results reveal an ontogenetic shift in the effects of functional diversity on AGB productivity over the course of succession in northeastern temperate forests. Corroborating with classical models of biomass development in late-successional northern hardwood forests, our findings support the need for adaptive forest carbon management to facilitate a mosaic of different forest successional stages across the landscape to maximize live aboveground carbon benefits in northeastern mixed hardwood forests.
|
49 |
Bayesian hierarchical approaches to analyze spatiotemporal dynamics of fish populationsBi, Rujia 03 September 2020 (has links)
The study of spatiotemporal dynamics of fish populations is important for both stock assessment and fishery management. I explored the impacts of environmental and anthropogenic factors on spatiotemporal patterns of fish populations, and contributed to stock assessment and management by incorporating the inherent spatial structure. Hierarchical models were developed to specify spatial and temporal variations, and Bayesian methods were adopted to fit the models.
Yellow perch (Perca flavescens) is one of the most important commercial and recreational fisheries in Lake Erie, which is currently managed using four management units (MUs), with each assessed by a spatially-independent stock-specific assessment model. The current spatially-independent stock-specific assessment assumes that movement of yellow perch among MUs in Lake Erie is statistically negligible and biologically insignificant. I investigated whether the assumption is violated and the effect this assumption has on assessment. I first explored the spatiotemporal patterns of yellow perch abundance in Lake Erie based on data from a 27-year gillnet survey, and analyzed the impacts of environmental factors on spatiotemporal dynamics of the population. I found that yellow perch relative biomass index displayed clear temporal variation and spatial heterogeneity, however the two middle MUs displayed spatial similarities. I then developed a state-space model based on a 7-year tag-recovery data to explore movements of yellow perch among MUs, and performed a simulation analysis to evaluate the impacts of sample size on movement estimates. The results suggested substantial movement between the two stocks in the central basin, and the accuracy and precision of movement estimates increased with increasing sample size. These results demonstrate that the assumption on movements among MUs is violated, and it is necessary to incorporate regional connectivity into stock assessment. I thus developed a tag-integrated multi-region model to incorporate movements into a spatial stock assessment by integrating the tag-recovery data with 45-years of fisheries data. I then compared population projections such as recruitment and abundance derived from the tag-integrated multi-region model and the current spatial-independent stock-specific assessment model to detect the influence of hypotheses on with/without movements among MUs. Differences between the population projections from the two models suggested that the integration of regional stock dynamics has significant influence on stock estimates.
American Shad (Alosa sapidissima), Hickory Shad (A. mediocris) and river herrings, including Alewife (A. pseudoharengus) and Blueback Herring (A. aestivalis), are anadromous pelagic fishes that spend most of the annual cycle at sea and enter coastal rivers in spring to spawn. Alosa fisheries were once one of the most valuable along the Atlantic coast, but have declined in recent decades due to pollution, overfishing and dam construction. Management actions have been implemented to restore the populations, and stocks in different river systems have displayed different recovery trends. I developed a Bayesian hierarchical spatiotemporal model to identify the population trends of these species among rivers in the Chesapeake Bay basin and to identify environmental and anthropogenic factors influencing their distribution and abundance. The results demonstrated river-specific heterogeneity of the spatiotemporal dynamics of these species and indicated the river-specific impacts of multiple factors including water temperature, river flow, chlorophyll a concentration and total phosphorus concentration on their population dynamics.
Given the importance of these two case studies, analyses to diagnose the factors influencing population dynamics and to develop models to consider spatial complexity are highly valuable to practical fisheries management. Models incorporating spatiotemporal variation describe population dynamics more accurately, improve the accuracy of stock assessments, and would provide better recommendations for management purposes. / Doctor of Philosophy / Many fish populations exhibit complex spatial structure, but the spatial patterns have been incorporated into stock assessment only in few cases. A full understanding of spatial structure of fish populations is needed to better manage the populations. Stock assessment and management strategies should depend on the inherent spatial structure of the target fish population. There have been many approaches developed to analyze spatial structure of fish populations. In this dissertation, I developed quantitative models to analyze fish demographic data and tagging data to explore spatial structure of fish populations. Yellow perch (Perca flavescens) in Lake Erie and Alosa group including American Shad (Alosa sapidissima), Hickory Shad (A. mediocris) and river herrings (Alewife A. pseudoharengus and Blueback Herring A. aestivalis) in selected tributaries of the Chesapeake Bay were taken as examples. Fishery-independent data for yellow perch displayed spatial similarities in the central basin of Lake Erie. Distinct temporal trends were observed in relative abundance data for Alosa sp. in different tributaries of the Chesapeake Bay. Substantial yellow perch movement among the central basin of the Lake was observed in tagging data. Ignoring the inherent spatial structure may cause fish to be overfished in some regions and underfished in others. To maximize the effectiveness of management in all regions for fish populations, I highly recommend incorporating spatial structure into stock assessment and management such as the ones developed in this dissertation.
|
50 |
Bayesian Approach Dealing with Mixture Model ProblemsZhang, Huaiye 05 June 2012 (has links)
In this dissertation, we focus on two research topics related to mixture models. The first topic is Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions, and the second topic is Bayesian Model Selection for Nonlinear Mixed Effects Model.
In the first topic, we consider a finite mixture model, which is used to fit the data from heterogeneous populations for many applications. An Expectation Maximization (EM) algorithm and Markov Chain Monte Carlo (MCMC) are two popular methods to estimate parameters in a finite mixture model. However, both of the methods may converge to local maximum regions rather than the global maximum when multiple local maxima exist. In this dissertation, we propose a new approach, Adaptive Rejection Metropolis Simulated Annealing (ARMS annealing), to improve the EM algorithm and MCMC methods. Combining simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS), ARMS annealing generate a set of proper starting points which help to reach all possible modes. ARMS uses a piecewise linear envelope function for a proposal distribution. Under the SA framework, we start with a set of proposal distributions, which are constructed by ARMS, and this method finds a set of proper starting points, which help to detect separate modes. We refer to this approach as ARMS annealing. By combining together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM ARMS annealing algorithm and a Bayesian ARMS annealing approach. EM ARMS annealing implement the EM algorithm by using a set of starting points proposed by ARMS annealing. ARMS annealing also helps MCMC approaches determine starting points. Both approaches capture the global maximum region and estimate the parameters accurately. An illustrative example uses a survey data on the number of charitable donations.
The second topic is related to the nonlinear mixed effects model (NLME). Typically a parametric NLME model requires strong assumptions which make the model less flexible and often are not satisfied in real applications. To allow the NLME model to have more flexible assumptions, we present three semiparametric Bayesian NLME models, constructed with Dirichlet process (DP) priors. Dirichlet process models often refer to an infinite mixture model. We propose a unified approach, the penalized posterior Bayes factor, for the purpose of model comparison. Using simulation studies, we compare the performance of two of the three semiparametric hierarchical Bayesian approaches with that of the parametric Bayesian approach. Simulation results suggest that our penalized posterior Bayes factor is a robust method for comparing hierarchical parametric and semiparametric models. An application to gastric emptying studies is used to demonstrate the advantage of our estimation and evaluation approaches. / Ph. D.
|
Page generated in 0.0964 seconds