• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 16
  • 16
  • 10
  • 10
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanisms of Methanogenic Inhibition in Advanced Anaerobic Digestion

Wilson, Christopher Allen 19 January 2010 (has links)
A series of lab-scaled digestion studies including conventional mesophilic anaerobic digestion(MAD), thermophilic anaerobic digestion (TAD) at a range of treatment temperatures, and mesophilic high solids digestion of thermally pretreated wastewater sludge (THD) were carried out. Enhanced digestion performance in terms of solids destruction and methane generation by THD relative to MAD was achieved, and was largely attributable to the solubilization and subsequent biodegradation of energy-rich substrates within blended primary and secondary sludge. TAD was observed to underperform MAD, especially at elevated temperatures as methanogenic inhibition resulted in the accumulation of headspace hydrogen, thus resulting in poor removal of volatile fatty acids. The thermodynamics of fatty acid metabolism was favorable at each digestion temperature, thus it was concluded that microbial inhibition was the controlling factor in poor thermophilic performance. Inhibition by free unionized ammonia (NH₃) was characterized for THD and MAD biomass. Acetic acid degradation was equally affected over a range of NH₃ concentrations; however, methane generation by THD was less sensitive to ammonia inhibition, thus suggesting that methanogenesis by THD was less dependent on the NH₃-sensitive process of aceticlastic methanogenesis. Total ammonia nitrogen (TAN) and bicarbonate alkalinity were stoichiometrically produced from proteinaceous material during thermal hydrolytic pretreatment and subsequent high solids anaerobic digestion. Combined effects of TAN and high pH resulted in NH₃-inhibition during THD. Kinetic evaluations suggested that a growth rate reduction of approximately 65% was associated with in-situ NH₃ concentrations of the THD reactor. NH₃-inhibition was apparently responsible for a shift in dominant methanogenic community of the aceticlastic Methanosarcina barkeri in MAD to the hydrogenotrophic Methanoculleus bourgensis in THD. A similar shift in methanogenic community was observed between low temperature thermophilic digestion at 47°C, where the dominant order was Methanosarcinales, to high temperature thermophilic digestion at 59°C where the dominant order was Methanobacteriales. These findings support a process-driven pathway shift from aceticlastic to non-aceticlastic methanogenesis between 180 and 290 mg/L NH₃-N. Such a threshold is supported by previous literature related to ammonia tolerance of pure cultures of methanogens and has significant implications for the kinetic design of advanced anaerobic digestion processes. / Ph. D.
12

Effect of Process Intensification Techniques on Biosolids Management

Zhang, Dian 10 April 2020 (has links)
This study is aimed to provide comprehensive evaluation and mechanistic understanding of the impact of process intensification techniques applied in main and side stream wastewater treatment on biosolids management in terms of anaerobic digestion enhancement, dewaterability improvement, odor mitigation, as well as phosphorus and nitrogen removal. The first part of this study was conducted to understand the effect of anaerobic digester solids retention time (SRT) on odor emission from biosolids. A kinetic model and inhibitory studies showed the emission of methanethiol (MT), a representative odor compound, was primarily determined by the dynamic concurrence of MT production from amino acid and utilization by methanogens in the course of anaerobic digestion. MT emission pattern follows a bell-shape curve with SRT in anaerobic digesters. However, for digested and dewatered biosolids, SRT ranging from 15 to 50 days in anaerobic digesters demonstrated insignificant effect on the odor emission from biosolids. In contrast, the peak odor emission was found to exponentially increase with both shear intensity and polymer dose applied during dewatering. The second part of this study investigated the impact of process intensification practices on sludge dewatering performance. The integration of high-rate activated sludge process and anaerobic digestion elevated the sludge orthophosphate level, leading to struvite scaling and dewaterability deterioration. Superior orthophosphate removal, significant improvement of sludge dewaterability, and favorable economics were achieved through sludge conditioning by cerium chloride. Continuous flow aerobic granulation technology offered significant process intensification of mainstream treatment trains. However, its impact on biosolids management was not studied. This study showed that there was little dewaterability difference between aerobic granular sludge and activated sludge when polymer was not added. However, about 75% polymer saving and improved dewatering performance were observed with polymer addition. When subjected to high shear, a greater dewaterability deterioration was observed for granular sludge than activated sludge. The last part of this study is focused on the impact of anaerobic digestion process intensification through thermal treatment including pre-pasteurization, thermophilic anaerobic digestion, temperature phased anaerobic digestion, and thermal hydrolysis pretreatment. Improved methane production, pathogen reduction, dewatering performance, and odor mitigation were observed with the involvement of these high-temperature processes. However, special cautions and measure should be taken during the start-up of these high rate processes as they are more liable to digester souring. In addition, the in-depth understanding of the mechanism of recalcitrant dissolved organic nitrogen formation during sludge thermal pretreatment was provided. / Doctor of Philosophy / This study is aimed to provide comprehensive evaluation and mechanistic understanding of the impact of process intensification techniques applied in main and side stream wastewater treatment on biosolids management in terms of anaerobic digestion enhancement, dewaterability improvement, odor mitigation, as well as phosphorus and nitrogen removal. The first part of this study was conducted to understand the effect of anaerobic digester solids retention time (SRT) on odor emission from biosolids. A kinetic model and inhibitory studies showed the emission of methanethiol (MT), a representative odor compound, was primarily determined by the dynamic concurrence of MT production from amino acid and utilization by methanogens in the course of anaerobic digestion. MT emission pattern follows a bell-shape curve with SRT in anaerobic digesters. However, for digested and dewatered biosolids, SRT ranging from 15 to 50 days in anaerobic digesters demonstrated insignificant effect on the odor emission from biosolids. In contrast, the peak odor emission was found to exponentially increase with both shear intensity and polymer dose applied during dewatering. The second part of this study investigated the impact of process intensification practices on sludge dewatering performance. The integration of high-rate activated sludge process and anaerobic digestion elevated the sludge orthophosphate level, leading to struvite scaling and dewaterability deterioration. Superior orthophosphate removal, significant improvement of sludge dewaterability, and favorable economics were achieved through sludge conditioning by cerium chloride. Continuous flow aerobic granulation technology offered significant process intensification of mainstream treatment trains. However, its impact on biosolids management was not studied. This study showed that there was little dewaterability difference between aerobic granular sludge and activated sludge when polymer was not added. However, about 75% polymer saving and improved dewatering performance were observed with polymer addition. When subjected to high shear, a greater dewaterability deterioration was observed for granular sludge than activated sludge. The last part of this study is focused on the impact of anaerobic digestion process intensification through thermal treatment including pre-pasteurization, thermophilic anaerobic digestion, temperature phased anaerobic digestion, and thermal hydrolysis pretreatment. Improved methane production, pathogen reduction, dewatering performance, and odor mitigation were observed with the involvement of these high-temperature processes. However, special cautions and measure should be taken during the start-up of these high rate processes as they are more liable to digester souring. In addition, the in-depth understanding of the mechanism of recalcitrant dissolved organic nitrogen formation during sludge thermal pretreatment was provided.
13

An Investigation into the Mechanisms of Sludge Reduction Technologies

Riedel, David John 08 June 2009 (has links)
Anaerobic digestion has been the preferred method for reducing and stabilizing waste sludge from biological wastewater treatment for over a century; however, as sludge volumes and disposal costs increase, there has been a desire to develop various methods for reducing the volume of sludge to be treated, improving the performance of the digesters, and increasing the energy value of the sludge. To this end, there have been numerous pretreatment and side-stream systems studied and developed over the past several decades with the overall goal of reducing the volume of biosolids to be disposed of in landfills or by land application. These technologies can be broken into four large groups: mechanical, thermal, chemical and biological, although there is often overlap between groups. This research approached the evaluations of these technologies through several methods in the hopes of developing effective tools for predicting the performance of each technology. Batch digestion studies mimicking several of these treatment methods and extensive analytical work on samples from full-scale installations were conducted to determine the effectiveness of each technology. From these studies a simple batch digestion methodology was developed to analyze the effectiveness of the Cannibal solids reduction process on wastewater streams that have never been exposed to it. Batch digestion of sludges pretreated with ozone, mechanical shear and sonication provided insight into the effectiveness of each technology. Extensive analytical work on samples collected from full-scale installations of thermal hydrolysis, mechanical shear and the Cannibal process provided some insight into the workings of each process and potential leads as to how to further characterize and evaluate each process. / Master of Science
14

Hidrólise enzimática dos polissacarídeos do café

Baraldi, Ilton José 29 August 2013 (has links)
Made available in DSpace on 2016-06-02T19:55:37Z (GMT). No. of bitstreams: 1 5507.pdf: 1818716 bytes, checksum: f253091b70b1a6a711750c2be095f5e5 (MD5) Previous issue date: 2013-08-29 / Instant coffee is one of the main products generated by food industry worldwide, consisting of solubilized fraction from roasted and grounded coffee by heat treatment in two steps: thermal extraction at 125 0C, followed by thermal hydrolysis at 180 0C of not solubilized fraction in the previous step. With a high overall yield (~ 50%) due to high temperatures used in thermal hydrolysis step in order to solubilize carbohydrates present in the coffee, this step is characterized by high energy consumption and generation of unwished volatile compounds (acetaldehyde, furfural and 5 -hydroxy methyl furfural) from thermal degradation of coffee beans constituents. The goal of this study was to evaluate the feasibility of conducting hydrolysis and solubilization of polysaccharides remaining in coffee residue after thermal extraction step (low temperature) through enzymatic hydrolysis. This alternative was further compared to the industrial process conventionally employed. Enzymatic hydrolysis experiments were performed at 50 0C and pH 5.0, using roasted arabica coffee residue obtained after thermal extraction conducted at 125 0C (Steps I and II) or at 165 0C (Step III). Solubilized fraction by thermal extraction, thermal or enzymatic hydrolysis were characterized in terms of volatiles from thermal degradation (GC-MS), carbohydrate composition (HPAEC-PAD) and sensorial evaluation. In Step I of this study, 11 commercial enzyme preparations, presenting enzymatic activities of galactomannanases, cellulases, galactanases and &#946;-glucanases, among others, able to act in coffee biopolymers (arabinogalactans - AGs, galactomannans - GMs and cellulose) were tested. Three enzyme preparations (Powercell, Galactomannanase-HBI and Ultraflo® XL) were selected due to their high activity in standard substrates (463 FPU / g, 18,554 IU / g and 1.028 IU / mL, respectively). In Step II, the influence of the concentration of enzymatic preparations Powercell, Galactomannanase-HBI and Ultraflo ® XL (independent variables) on the performance of the enzymatic process was investigated by running 11 experiments performed according to a full factorial design in two levels. Results showed that Ultraflo® XL preparation did not contribute for carbohydrates solubilization nor for yield increasing (p-value> 0.49), while enzymes present in the preparations Galactomannanase and Powercell influenced significantly the response variables favoring the release of glucose, arabinose, mannose and glactose as free and total sugars (p-value <0.1). The best results were achieved in the experimental condition conducted with 0.12% of Powercell, 0.10% of galactomannanase, and 0.12% of Ultraflo® XL, reaching up 22.3% of yield with reduced concentration of unwished volatiles. Products obtained by the three processes were also compared, resulting in similar yields for thermal extraction and enzymatic hydrolysis, whereas thermal hydrolysis yield was approximately 60% higher, due to a high solubilization of galactose. However, this product contained double concentrations of unwished volatiles compounds. In order to improve the yield of the alternative process (thermal extraction followed by enzymatic hydrolysis), in Step III the extraction temperature influence in a range of 125 to 175 0C was studied. Results showed that it is possible to increase thermal extraction temperature to 165 0C, without additional generation of unwished volatiles and with 80% increase of yield in this stage, when compared to the traditional process performed at 125 0C. Residue unsolubilized at 165 0C was then processed by thermal hydrolysis (180 0C) and enzymatic hydrolysis in 3 different experimental conditions of factorial design performed in Step II. Achieved yields were similar in thermal and enzymatic hydrolysis (~ 28%). It was also noticed that increase of thermal extraction temperature enhanced coffee biopolymers solubilization by the enzymes action, again with reduced formation of undesirable volatiles. Sensorial evaluation of soluble coffees obtained by the different process was conducted. Product generated at 125 and 165 0C showed characteristics similar to roasted and grinded coffee fresh brew. Yet, thermal hydrolyzed products in Stages II and III stood out by high acidity, while the enzymatic hydrolyzed product showed characteristic strongly bitter in Step II and neutral characteristic in Stage III, although enzymatic hydrolysis can be improved it can be used for instant coffee production. / O café solúvel é um dos principais produtos gerados pela indústria de alimentos mundial, consistindo na fração solubilizada do café torrado e moído por tratamento térmico em duas etapas: extração térmica a 125 0C, seguida por hidrólise térmica a 180 0C da fração não solubilizada na etapa anterior. Com elevado rendimento total (~ 50 %) na solubilização dos carboidratos presentes no café devido à alta temperatura empregada na etapa de hidrólise térmica, essa etapa se caracteriza por alto consumo de energia, além da geração de compostos voláteis indesejados (acetaldeído, furfural e 5-hidroxi metil furfural) provenientes da degradação térmica dos constituintes dos grãos de café. O objetivo deste trabalho foi avaliar a viabilidade de efetuar a hidrólise e solubilização dos polissacarídeos presentes no resíduo do café obtido após a etapa de extração térmica (baixa temperatura) por meio de hidrólise enzimática, além de comparar essa alternativa com o processo industrial convencionalmente empregado. Os experimentos de hidrólise enzimática foram realizados a 50 0C e pH 5,0, utilizando o resíduo de café arábica torrado obtido após extração térmica conduzida a 125 0C (Etapas I e II) ou a 165 0C (Etapa III). A fração solubilizada por extração térmica e pela hidrólise térmica ou enzimática foi caracterizada em termos de voláteis provenientes de degradação térmica por (GC-MS), composição de carboidratos (HPAEC-PAD) e avaliação sensorial. Na Etapa I do presente estudo, foram inicialmente testados 11 preparados enzimáticos comerciais apresentando atividades enzimáticas de galactomananases, celulases, galactanases e &#946;-glucanases, dentre outras, capazes de atuar nos principais biopolímeros do café (arabinogalactanos - AGs, galactomananos - GMs e celulose), sendo selecionados os produtos Powercell, Galactomananase-HBI e Ultraflo® XL devido à maior atividade enzimática em substratos padronizados (463 FPU/g, 18.554 UI/g e 1.028 UI/mL, respectiviamentes). Na Etapa II, a influência da concentração dos preparados Powercell, Galactomananase-HBI e Ultraflo® XL (variáveis independentes) no desempenho do processo de hidrólise enzimática foi investigado por meio de 11 experimentos executados de acordo com um planejamento fatorial completo em dois níveis. Os resultados mostraram que o preparado Ultraflo® XL não contribuiu (p-valor > 0,49) para solubilização de carboidratos ou aumento de rendimento, enquanto que as enzimas presentes nos preparados Powercell e Galactomananase influenciaram significativamente as respostas, favorecendo a liberação de glicose, arabinose, glactose e manose como açúcares livres e totais (p-valor < 0,1). Os melhores resultados foram alcançados na condição experimental conduzida com 0,12 % de Powercell, 0,10 % de Galactomananase, e 0,12 % de Ultraflo® XL, alcançando-se 22,3 % de rendimento com reduzida concentração de voláteis indesejados. Os produtos obtidos pelos três processos foram ainda comparados, obtendo-se rendimentos semelhantes nas extrações térmica e hidrólise enzimática, enquanto o rendimento da hidrólise térmica foi aproximadamente 60% superior devido principalmente à maior solubilização de galactose, apresentando porém o dobro de voláteis indesejados. Buscando-se aumentar o rendimento do processo alternativo (extração térmica seguida por hidrólise enzimática), na Etapa III do estudo, a influência da temperatura de extração térmica foi variada de 125 a 175 0C. Os resultados mostraram que é possível elevar a temperatura da extração térmica até 165 0C, sem geração adicional de voláteis indesejados e com aumento de 80 % no rendimento desta etapa em relação ao processo tradicional realizado a 125 0C. O resíduo não solubilizado a 165 0C foi então processado por hidrólise térmica (180 0C) e hidrólise enzimática em 3 diferentes condições experimentais avaliadas no planejamento fatorial realizado na Etapa II. Os rendimentos alcançados foram semelhantes para a hidrólise térmica e hidrólise enzimática (~28 %), constatando-se que o aumento da temperatura da extração térmica favoreceu a solubilização dos biopolímeros do café pela ação das enzimas, novamente com reduzida formação de voláteis indesejados. Efetuou-se avaliação sensorial dos cafés solúveis obtidos, sendo que os produtos gerados a 125 e 165 0C apresentaram características semelhantes ao café de coador. Já o hidrolisado obtido termicamamente nas Etapas II e III se destacou pela elevada acidez, enquanto o hidrolisado enzimático gerado na Etapa II apresentou característica fortemente amarga e o da Etapa III característica neutra, mostrando que embora necessite ser aprimorada, a hidrólise enzimática pode ser utilizada na fabricação de café solúvel.
15

Generation of Biomarkers from Anthrax Spores by Catalysis and Analytical Pyrolysis

Smith, Phillip R. 26 August 2005 (has links) (PDF)
Anthrax spores, in weaponized form, are dangerous biological warfare agents. Handheld technology for the rapid detection of anthrax is greatly needed to improve national security. Methods to detect anthrax spores are diverse, with most taking at least an hour for positive identification. A viable option for rapid detection is analytical pyrolysis (AP), which produces chemicals containing taxonomical information (biomarkers). AP methods are reviewed and critically analyzed to show that reproducible detection of anthrax spores in a rapid manner (< 5 min) with a handheld device is not currently possible. A promising alternative to AP is the use of a catalyst to produce biomarkers from anthrax spores with improved selectivity and reproducibility. Catalytic materials having promise for this include platinum, nickel, and superacids. Experiments evaluating several of these materials are described. A biomarker mass spectral library was created, based on information available in the scientific literature, to facilitate analysis and identification of the biomarkers produced experimentally. The RAMFAC algorithm was used to deconvolute chromatographic peaks to produce clean mass spectra and match them against entries in the biomarker library. While the library is not complete, its use with the RAMFAC algorithm enabled detection of many important biomarkers in experiments involving catalytic breakdown of anthrax spores. Experimental results from preliminary tests of several catalysts are presented and discussed. Addition of catalysts in the form of platinum nanoclusters and superacids to bacterial spores in a commercial pyrolyzer effected an increase in the amount of biomarkers produced at mild conditions over traditional pyrolysis methods. Electroformed nickel mesh, on the other hand, demonstrated low catalytic activity for the production of biomarkers, likely due to poor contact of the spores with the mesh. Biomarkers similar to those published in the literature were observed, including dipicolinic acid, picolinic acid, propionamide, acetamide, diketopiperazines, fatty acids, furfuryl alcohol, and DNA bases. A statistically designed factorial study was used to determine the importance of temperature, spore loading, and nanocluster loading on the production of three important biomarkers. The relative importance of these variables differs for each of the three important biomarkers, suggesting they are produced by different reaction mechanisms.
16

Impact of operating conditions on thermal hydrolysis pre-treated digestion return liquor

Ahuja, Nandita 23 September 2015 (has links)
Return liquor from thermal hydrolysis process (THP) can significantly add to the nitrogen load of a wastewater treatment plant (WWTP) and introduce UV quenching substances to the wastewater stream when recycled. While there are mature technologies in place to handle the inorganic nitrogen produced due to the thermal pretreatment, organic nitrogen remains a parameter of concern for utilities employing THP pretreatment. The impact of operating conditions of the THP on dissolved organic nitrogen (DON) and UV absorbance in return liquor was investigated. Operating conditions studied were (1) operating temperature (2) solids retention time (SRT) in the anaerobic digester (3) THP flash pressure (4) the effect of co-digestion of sewage sludge with food waste and, (5) polymer conditioning. Operating temperature and polymer dose had the most significant impact on DON and UV quenching. It was found that an increase in operating temperature resulted in an increase in DON, which was primarily contributed by the hydrophilic fraction. An increase in temperature also resulted in increased UV254 absorbance. However, this trend was not linear and the increase was more pronounced when the temperature was increased from 150 C to 170 C. Increasing flash pressure from 25 psi to 45 psi did not have a significant impact on the return liquor. However, increasing the flash pressure to 75 psi increased the DON and UV254 absorbing compounds. Co-digesting the sludge with food waste resulted in a slight increase in DON and a decrease in dissolved organic carbon (DOC) and UV quenching compounds. Increasing the SRT from 10 days to 15 days resulted in a slight decrease in DON but did not have any impact on UV254 absorbance. Overall, it can be concluded that optimizing operating conditions of thermal hydrolysis process can result in decreased DON and UV quenching compounds in the recycle stream. / Master of Science

Page generated in 0.0698 seconds