• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 43
  • 23
  • 18
  • 8
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 218
  • 218
  • 40
  • 34
  • 27
  • 25
  • 23
  • 22
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

NiCo 10 at%: A promising silicide alternative to NiPt 15 at% for thermal stability improvement in 3DVLSI integration

Deprat, Fabien, Nemouchi, F., Fenouillet-Beranger, C., Batude, P., Previtali, B., Danielou, M., Rodriguez, P., Favier, S., Fournier, C., Gergaud, P., Vinet, M. 22 July 2016 (has links)
3D VLSI with a CoolCube TM process allows vertically stacking several layers of devices with a unique connecting via density above a million/mm2. The thermal budget allowed to process the top transistor is currently limited by NiPt silicide stability of the bottom transistor. To extend the upper transistors thermal process window, Pre-Amorphization Implant (PAI) and Si-Capping were used to improve the stability of NiPt 15% on SiC:P and SiGe 30% :B accesses. While PAI enhances the silicide stability on SiC:P substrate from 600°C 2h to 700°C 2h, neither PAI nor Si-Capping improve silicide stability on SiGe 30% :B. To provide a solution for P accesses stability, NiCo 10% silicidation has been developed. Combined with PAI and Si-Capping, the germano-silicide offers a higher stability (up to 600°C 2h) than its NiPtSi 15% counterpart.
72

Production routes to tune cellulose nanocrystal properties and their performance at high temperatures

Vanderfleet, Oriana January 2021 (has links)
This thesis explores new and existing cellulose nanocrystal (CNC) production methods and evaluates their effects on CNC properties, with emphasis on their thermal performance. CNCs produced from industrial and lab-scale processes possess a wide range of surface chemistries, surface charge contents, as well as structural and morphological properties which affect their performance in CNC-based applications. Despite the broad range of available CNC properties, some challenges persist, particularly in the incorporation of CNCs into hydrophobic matrices, high brine liquid formulations, and high temperature applications. Herein, sulfated and carboxylated CNCs produced from large-scale processes were thoroughly characterized and key differences in their thermal performance and self-assembly and rheological behaviors were identified. Furthermore, an optimization study on phosphoric acid hydrolysis parameters and a novel surface modification method which deposits cellulose phosphate oligosaccharides onto CNC surfaces were proposed. The optimization study revealed that CNCs with high colloidal stability could not be produced with phosphoric acid alone; however, the weak acid hydrolysis allowed for precise control over CNC length. The deposition of oligosaccharides onto CNCs, however, resulted in highly colloidally stable CNCs possessing both phosphate and sulfate functional groups. Furthermore, this surface modification method altered CNC surface charge content, water interactions, and the viscosity of their aqueous suspensions. In these studies, however, changes in CNC thermal performance were difficult to elucidate. As such, to further understand the effects of CNC properties on both their dried and aqueous form thermal performance, a systematic comparison of sulfated, phosphated, and carboxylated CNCs was performed. CNCs were produced with new acid blend hydrolyses (i.e., combining sulfuric and phosphoric acid) as well as existing organic acid hydrolyses and oxidation routes. The combined effects of surface chemistry and counterion profoundly affected the thermal performance of dried CNCs, whereby sulfated and carboxylated CNCs were less thermally stable with proton and sodium counterions, respectively. Additionally, dried CNCs with more surface charge groups, shorter cellulose chains, and higher specific surface areas were found to be less resistant to high temperatures. As such, the new CNCs produced with acid blends exhibited superior thermal performance in their dried form due to their lower charge contents and longer cellulose chains. In their aqueous suspension form, carboxylated CNCs far outperformed both sulfated and phosphated CNCs at high temperatures; their suspensions remained colloidally stable at temperatures up to 150°C for extended time periods. Overall, this thesis equips CNC users and researchers with knowledge and tools to expand the usage of CNCs in commercial applications, particularly those which require high temperatures such as melt-processed polymer composites and oil and gas extraction fluids. / Thesis / Doctor of Philosophy (PhD) / This thesis contributes to a broader effort in replacing non-renewable and emissions intensive materials with sustainable alternatives such as nanocellulose. Nanocelluloses are nanometer-sized (where one nanometer is one billionth of a meter) cellulose particles manufactured from wood, cotton, or other natural resources. Nanocelluloses are made within Canada on a tonne-per-day scale; this value-added wood product presents an opportunity to refresh the Canadian forest industry. While nanocelluloses have many potential applications, their usage is somewhat limited by their inability to resist heat. This thesis examines changes in nanocellulose properties at high temperatures and evaluates how nanocellulose production methods affect their particle properties and thermal performance. New production methods are explored that increase nanocellulose resistance to heat, alter their dimensions, and change their interactions with water. Overall, this work aims to expand the usage of nanocellulose in commercial products such as coatings, plastics, industrial fluids, food products, and cosmetics (to name a few) by helping researchers select the right kind of nanocellulose for their intended applications.
73

Understanding the hyper-activation among the recurrent oncogenic miss-sense mutations in NSD2 methyltransferase

Hincapié-Otero, María Mercedes 03 1900 (has links)
Mutations in epigenetic regulators such as the SET domain-containing methyltransferase NSD2 are of high interest among the research community nowadays. The involvement of this mutations in multiple diseases put them in the spotlight. Interestingly, the change of the glutamic acid residue in the position 1099 of the NSD2 SET domain for a lysine residue has been recurrently found in multiple myeloma patients. This mutation produces a hyperactive enzyme that hypermethylate the natural enzymatic substrate: the lysine in the position 36 of the basic tail of the histone 3 in the nucleosomal context. Apparently, this hyperactivation may be related to the disruption of a critical salt-bridge that stabilize an autoregulatory loop of the NSD2 catalytic site. However, despite the extensive research that have been done around this phenomenon, the molecular mechanism behind this hyperactivation still remains unknow. For this reason, in this study we addressed this matter from a structural point of view by evaluating the structure and dynamics of the protein in solution by high-resolution Nuclear Magnetic Resonance (NMR) spectroscopy and biophysical techniques. We found increased local segmental motions in us to ms timescale that induced protein flexibility that may correlate with gain-of-function of E1099K miss-sense mutation. Further functional studies with the native substrates in vitro and in vivo are needed to understand this observation.
74

Influence of Chemical Structure on the Thermal Stability of Pyranoanthocyanins in Comparison to Anthocyanins

Voss, Danielle Marie January 2021 (has links)
No description available.
75

Using Genetic Code Expansion and Rational Disulfide Bond Design to Engineer Improved Activity and (Thermo)Stability of Rhodococcus opacus Catechol 1,2-Dioxygenase

Lister, Joshua 23 January 2024 (has links)
Catechol 1,2-Dioxygenase from Rhodococcus opacus is a type of intradiol dioxygenase enzyme that catalyzes the conversion of catechol to cis, cis muconic acid. This enzymatic conversion has the potential to be useful in a number of different applications such as treating wastewater contaminated with aromatic compounds to creating a greener method to produce cis, cis muconic acid which can be used to make a number of industrially important base chemicals. However, for enzymes to be used in industrial conditions, they must be highly stable. The experimental chapters in this thesis explore whether this enzyme can be stabilized to meet industrial requirements while minimizing any loss in catalytic activity. Through the studies described in Chapter 2, a mutant enzyme was generated through disulfide bond engineering with significantly improved thermostability. However overall catalytic activity was reduced. Toward addressing this loss of catalytic activity, in Chapter 3, attempts were made to implement state-of-the-art genetic code expansion strategies to increase catalytic activity of the enzymes. However, these attempts were unsuccessful. Finally, Chapter 4 describes how future stability engineering could be optimized using design pipelines similar to the one developed in this study. Additionally, it describes possible additional optimizations toward making the application of these enzymes cost effective in the near future.
76

Thermal Stability and Performance of Foil Thrust Bearings

Stahl, Brian James 26 June 2012 (has links)
No description available.
77

Synthesis and Characterization of Novel Titanium Oxide Nanotubes - Applications as Catalyst Support for the Selective Catalytic Reduction of Nitrogen Oxides

Pappas, Dimitrios 17 October 2014 (has links)
No description available.
78

Effects of enzymatic and thermal processing on flavones, the effects of flavones on inflammatory mediators in vitro, and the absorption of flavones in vivo

Hostetler, Gregory 20 October 2011 (has links)
No description available.
79

Investigations of the Thermal Runaway Process of a Fluorine-Free Electrolyte Li-Ion Battery Cell / Undersökning av den termiska rusningsprocessen hos litiumjonbatterier med en fluorfri elektrolyt.

Patranika, Tamara January 2021 (has links)
Detta projekt syftar till att undersöka den termiska rusningsprocessen hos ett litiumjonbatteri med en fluorfri elektrolyt och jämföra den med en kommersiellt använd fluor-innehållande elektrolyt. Battericellerna innehöll silikon-grafit som anod och LiNi0.6Mn0.2Co0.2O2 (NMC622) som katod. Den fluorfria elektrolyten var baserad på litium bis(oxalato)borat (LiBOB) i organisk lösning med additivet vinylen karbonat(VC). Det jämfördes med en fluor-innehållande elektrolyt med LiPF6 i samma organiska lösning tillsammans med VC och fluoroetylene karbonat (FEC). De termiska stabilitetstesterna utfördes med Accelerating Rate Calorimetry (ARC) och Differentiell svepkalorimetri (DSC). Både knappceller och pouchceller har undersökts med hjälp av ARC. Trots flera försök med olika uppställning kunde den termiska rusningen inte bli detekterad för någon av celltyperna, med slutsatsen att en störremängd aktivt material behövs. Istället användes DSC för att undersöka de termiska reaktionerna hos batteri-komponenterna. Resultaten visade att anoden var mer termisk stabil med den fluorfria elektolyten, medan samma elektrolyt visade mindre termisk stabilitet på katoden. Vidare undersökningar behövs dock för bekräftelse av katoden. / This project aims to investigate the thermal runaway process of fluorine-free lithium ion battery cells and to compare this with a commercially used fluorinated electrolyte. The cells consisted of a silicon-graphite composite anode and a LiNi0.6Mn0.2Co0.2O2(NMC622) cathode. The non-fluorinated electrolyte used was based on lithiumbis(oxalato)borate (LiBOB) in organic solvents with the additive vinylene carbonate(VC). Moreover, the fluorinated electrolyte consisted of LiPF6 in the same organic solvents together with VC and fluoroethylene carbonate (FEC). The thermal stability measurements have included Accelerating Rate Calorimetry (ARC) and Differential Scanning Calorimetry (DSC). Moreover, both coin cells and pouch cells have been examined by ARC. However, thermal runaway could not be detected for either type of cells, concluding that a greater amount of active material was needed. In order to measure the thermal reactions of the battery components, DSC was used. These results concluded that the anode was more thermally stable with a non-fluorinated electrolyte. However, the thermal stability appeared to be lower for the cathode, therefore, further investigation is needed for confirmation of the cathode.
80

Understanding the Thermal Stability and Environmental Sensitivity of Phycocyanin using Spectroscopic and Modelling Tools

Toong, Cally 25 October 2018 (has links) (PDF)
Phycocyanin (PC), a pigment-protein conjugate from Arthrospira platensis, is increasingly used in foods as a natural alternative to artificial blue dyes. Although PC has been classified as a color additive exempt from certification by the Food and Drug Administration, its limited stability has hindered its widespread application in food products. The objectives of this study were: a) to evaluate the photophysical properties of PC and their sensitivity to temperature, viscosity, and water activity, b) to monitor PC’s thermal degradation based on changes in the optical properties of its intrinsic fluorophores, namely its chromophores and aromatic amino acids, and c) to extract PC’s thermal degradation kinetics parameters from non-isothermal degradation profiles and validate their predictive ability. PC’s photophysical properties were monitored in solutions with viscosities from 1 to8000 mPa s and water activities, aw, from about 0 to 1. PC’s emission intensity showed high sensitivity to aw above 0.8 and mild sensitivity to the viscosity of its local environment. The effect of temperature on PC’s photophysical properties was tested in aqueous PC solutions (0.5 mM, pH: 6.1) subjected to non-isothermal temperature profiles with target temperatures from 42.5 to 80°C. The stability of PC was monitored in terms of its photophysical properties, i.e., fluorescence emission intensity, energy, and anisotropy (r) of its chromophore at set time intervals. Additionally, the photophysical properties of PC’s aromatic amino acids (AAs) tyrosine and tryptophan (lexc: 280 and 295 nm) were recorded. The thermal degradation kinetics of PC was assumed to follow a Weibullian model, and the temperature dependence of the degradation rate parameter, b(T), a logarithmic exponential model. Changes of PC fluorescence intensity under dynamic conditions were used to extract the degradation kinetics parameters using the endpoints method. Deviations between the estimated and experimental values were less than 10% for all temperature profiles. During thermal treatments, hypsochromic shifts of AAs’ emission spectra (from 340 to 315 nm) and significant increases in fluorescence anisotropy revealed that color losses were not solely associated with an alteration of the chromophore but with conformational changes and possible aggregation of the protein subunits. An increase in viscosity of the surrounding media provided a protected effect on discoloration during heating. Adequate modeling approaches and molecular spectroscopic techniques can help to develop effective strategies to enhance thermal stability, expand its use as a color and functional ingredient and operationalize it as an endogenous sensor of food quality.

Page generated in 0.066 seconds