• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et simulation des microclimats urbains - Étude de l'impact de l'aménagement urbain sur les consommations énergétiques des bâtiments

Bouyer, Julien 16 September 2009 (has links) (PDF)
Les architectes, les urbanistes et les ingénieurs sont fortement sollicités pour élaborer des méthodes de conception permettant de limiter l'impact environnemental de l'urbanisation. De nombreux travaux montrent que des phénomènes climatiques comme l'îlot de chaleur urbain sont à la fois les causes et les conséquences de l'augmentation de la consommation énergétique à l'échelle de la ville. Par ailleurs, l'expertise énergétique des bâtiments est possible avec des outils opérationnels qui ne prennent pas correctement en compte les conditions climatiques à petite échelle spatiale alors qu'il est démontré que leurs effets sont avérés. Souvent négligé, l'impact direct et indirect de l'aménagement constitue pourtant une piste intéressante pour la régulation énergétique passive. Pour étudier ces phénomènes, nous proposons dans cette thèse d'utiliser un outil de simulation microclimatique, reposant sur le couplage d'un modèle thermoradiatif et d'un code de mécanique des fluides numérique. Dans une première partie, nous développons un modèle de sol et un modèle thermique de bâtiment, ce dernier permettant le calcul des consommations énergétiques d'un bâtiment interagissant avec son environnement urbain. Nous les intégrons à l'outil de simulation thermoradiative (Solene), puis adaptons la procédure de couplage physique avec l'outil de simulation thermoaéraulique (Fluent). Dans une deuxième partie, nous caractérisons le comportement d'un bâtiment de référence en site isolé et décrit par des paramètres variables, en établissant des classes de consommations énergétiques à partir d'une méthode statistique d'étude de sensibilité multicritères. Enfin, nous réutilisons ces classes de bâtiments dans un contexte urbain réel, le projet Lyon Confluence, pour analyser l'impact de deux modes d'aménagement des îlots étudiés : un aménagement minéral et un aménagement végétal. Cette dernière partie fait ressortir deux résultats principaux à savoir l'écart important entre des consommations énergétiques simulées en contexte théorique isolé et simulées en site urbain, puis, l'économie potentielle d'énergie entre deux choix d'aménagement urbain pour un même projet.
2

Prédiction des performances thermo-aérauliques des bâtiments par association de modèles de différents niveaux de finesse au sein d'un environnement orienté objet

Mora, Laurent 19 September 2003 (has links) (PDF)
La conception de systèmes énergétiques innovants et la caractérisation du confort des occupants requièrent de d'être capable d'estimer les détails des écoulements et des transferts de chaleur au sein des zones des bâtiments. Les méthodes de modélisation permettant d'estimer ces détails, telles que les méthodes zonales et CFD, sont difficilement applicables à l'étude d'un bâtiment dans son ensemble et sur de longues périodes de temps. Notre étude consiste à proposer une plate-forme de simulation permettant dans un premier temps de traiter la plupart des zones du bâtiment et de son enveloppe à l'aide de l'approche nodale qui considère chacune des zones comme un volume parfaitement uniforme. Chaque zone est alors caractérisée par un seul noeud de calcul où sont déterminées les variables d'états (température, pression, concentration, etc.). Ensuite, il s'agit d'étudier les détails au sein d'un nombre limité de zones et d'estimer l'impact de ces détails sur le comportement global du bâtiment. Ainsi, nous proposons différentes méthodes de couplage entre d'une part la méthode nodale et d'autre part, les méthodes zonales et CFD. Après avoir présenté les différentes méthodes de modélisation retenues pour la détermination des transferts de masse et de chaleur dans les bâtiments, nous tentons de montrer l'intérêt d'utiliser l'une plutôt qu'une autre en fonction, des spécificités de chacune des zones, et de l'étude à effectuer. Ensuite, nous exposons la plate-forme de simulation développée, permettant de mettre en oeuvre aussi bien les approches nodales et zonales, que les différentes procédures de couplage dépendant du type d'association de modèles. Enfin, différentes applications viennent confirmer les capacités offertes par la plate-forme, pour moduler le niveau de finesse des modèles utilisés pour représenter chacune des zones d'un bâtiment, mais aussi pour proposer de nouvelles orientations de recherche. En effet, la dernière application présente une approche de couplage entre les approches zonale et CFD, dans laquelle la première tire la connaissance de la structure de l'écoulement de la seconde. L'outil développé apporte de nombreuses possibilités d'applications, aussi bien pour la caractérisation du bâtiment lui-même que de son intégration dans son environnement immédiat.
3

Génération automatique de modèles zonaux pour l'étude du comportement thermo-aéraulique des bâtiments

Musy, Marjorie 08 July 1999 (has links) (PDF)
Cette étude a pour objet de montrer qu'il est possible de générer automatiquement des modèles zonaux pour l'étude du comportement thermique et aéraulique des bâtiments. Les modèles zonaux sont basés sur le partitionnement des pièces en un petit nombre de sous-volumes. Cette approche est intermédiaire entre celle des modèles à un noeud (qui considèrent que la température est homogène dans chaque pièce, et pour cette raison ne permettent pas de prédire le confort thermique dans une pièce) et celle des codes CFD (qui sont très coûteux en temps de calcul). Pour atteindre notre objectif, nous avons reformulé le modèle zonal. Ceci a consisté à regrouper les équations de description du comportement du bâtiment dans des sous-systèmes d'équations. Ce regroupement est calqué sur le découpage spatial des pièces. Ainsi, les équations de bilan et d'état appliquées à un sous-volumes forment les modules de la famille des « cellules » et celles de transfert entre deux sous-volumes forment les modules de la famille des « interfaces ». Ces familles sont constituées de plusieurs modèles correspondant aux différents types d'écoulement qui se développent dans les bâtiments. Ceux-ci ont été traduits en objets SPARK, lesquels forment la bibliothèque de modèles. Construire une simulation consiste à choisir les modèles appropriés pour décrire les pièces et à les connecter. Cette dernière étape a été automatisée, si bien qu'il ne reste plus à l'utilisateur qu'à donner le partitionnement et à choisir les modèles qu'il désire implémenter. Le système d'équations résultant est résolu par le solveur de SPARK. Des résultats de simulations pour différentes configurations d'écoulement dans des pièces sont présentés et comparés à des données expérimentales. Nous donnons également des exemples d'application de la méthode zonale à l'étude d'un groupe de deux pièces, d'un bâtiment et d'une pièce de géométrie complexe.
4

Contribution à la modélisation thermo-aéraulique du microclimat urbain. Caractérisation de l'impact de l'eau et de la végétation sur les conditions de confort en espaces extérieurs

Vinet, Jérôme 29 November 2000 (has links) (PDF)
Les grandes villes, en période estivale, développent de plus en plus fréquemment certains problèmes liés au phénomène d'« îlot de chaleur urbain », comme les pics de pollution et la surconsommation énergétique due à la climatisation. La minéralisation des villes, en remplaçant la végétation et les zones humides par du béton et de l'asphalte contribue à ces nuisances. Notre objectif est alors de déterminer l'impact de la végétation et des bassins ou jets d'eau sur le microclimat urbain et sur les situations de confort thermique ressenties par un individu. Cette étude fait appel aux techniques de modélisation numérique. Dans la première partie, une importante synthèse bibliographique permet de faire le point sur des domaines aussi variés que la micro-climatologie urbaine, la simulation, l'urbanisme, l'arboriculture et le confort thermique en espace extérieur. Ces informations sont utiles lors de la mise en œuvre et de l'interprétation des simulations envisagées. Dans la deuxième partie, nous détaillons la réalisation d'un couplage thermo-aéraulique, basé sur deux outils numériques, SOLENE (logiciel d'ensoleillement et de thermique développé par le CERMA) et N3S (code de mécanique des fluides, développé par EDF). Ce couplage nécessite le développement de programmes spécifiques et de procédures d'interfaçage. Des éléments de validation sur des études de cas référencées, ainsi qu'une comparaison avec des mesures in-situ sont présentés. L'application de cette démarche à une étude de cas urbaine, la Place du Millénaire du quartier Antigone à Montpellier, permet d'analyser l'impact de la végétation sur le microclimat urbain et les conditions de confort en espace extérieur. La comparaison de trois situations, l'une sans végétation, l'autre avec la végétation actuelle et la dernière avec une végétation à taille adulte, démontre une évolution notable au cours des années des conditions microclimatiques et une amélioration sensible des situations de confort.
5

Etude de stratégies de ventilation pour améliorer la qualité environnementale intérieure et le confort des occupants en milieu scolaire

Dhalluin, Adrien 19 June 2012 (has links) (PDF)
La ventilation est un secteur clé du bâtiment, dont le rôle est d'assurer un air sain et confortable toute l'année, ce qui est rarement le cas dans les bâtiments scolaires, tout en minimisant les consommations énergétiques. Nos travaux consistent à apporter des éléments de réponses et des pistes d'amélioration pour l'élaboration de stratégies de ventilation appropriées au milieu scolaire, à partir de travaux expérimentaux et numériques. Pour ce faire, quatre modes de ventilation (naturelle et mixte) ont été testés dans des salles de classes de l'Université de La Rochelle, et leurs performances ont été comparées via une évaluation multicritère basée sur les paramètres physiques caractérisant l'environnement intérieur, les indices de confort (subjectif, analytique et adaptatif) et des critères énergétiques. Des méthodes normatives de classification et des estimations de consommations énergétiques nous ont permis de conclure, que le système de ventilation naturelle par ouverture automatisée des fenêtres, contrôlé par la détection de présence et des paramètres thermiques (système SOS), est le meilleur compromis. Nous soumettons toutefois dans ce manuscrit, un certain nombre d'améliorations à apporter à ce système.Notre contribution porte également sur la connaissance des mécanismes du confort humain et en particulier ses réactions adaptatives, en définissant les conditions favorables au confort et en proposant des modèles prédictifs du confort global, de l'ajustement personnel ainsi que du contrôle individuel de l'ambiance par les occupants. Ces résultats ont notamment pour vocation d'améliorer la prise en compte des interactions entre les occupants et leur environnement dans les simulations numériques et pourraient également servir de base au développement d'une stratégie de ventilation optimisée. Au niveau numérique, nous proposons des simulations annuelles de quatre stratégies de ventilation, très proches de celles testées sur site, à l'aide d'un code thermo-aéraulique multizone (couplage Trnsys/Contam), que nous avons validé à partir de certaines séquences de mesures. En tenant compte d'un scénario d'occupation scolaire standard et du fichier météorologique correspondant à la station de La Rochelle, nous avons notamment montré qu'il est primordial de pré-chauffer l'air d'un système de ventilation mécanique, sous peine d'être confronté à des besoins de chauffage insurmontables. En introduisant une puissance de chauffage illimitée, permettant de maintenir une température minimale acceptable et ainsi de simuler des conditions d'enseignement réalistes, il apparaît que la meilleure qualité environnementale intérieure est à nouveau obtenue avec le système SOS. Notre modèle nous donne désormais la possibilité de multiplier les stratégies de ventilation, ainsi que les scénarios d'occupation, les conditions climatiques ou tout autre étude paramétrique, afin d'élaborer les meilleures stratégies de ventilation dans chaque configuration.
6

Modélisation numérique de la thermoaéraulique du bâtiment: des modèles CFD à une approche hybride volumes finis / zonale

Bellivier, Axel 14 May 2004 (has links) (PDF)
Dans le contexte de la modélisation 3D en thermo-aéraulique du bâtiment à l'aide de codes de champs, il est nécessaire de réduire les temps de calcul afin de modéliser des volumes toujours plus grands. La solution proposée dans cette étude est le couplage de deux modélisations : l'approche zonale et l'approche CFD. La première partie du travail effectué est la mise en place d'une modélisation CFD simplifiée. Cette dernière propose des règles d'utilisation de maillages grossiers, une loi de viscosité effective constante et de coefficients d'échange thermique adéquats à la thermo-aéraulique du bâtiment. La seconde partie du travail concerne la création de Macro-Eléments fluides et leur couplage avec un calcul de type CFD volumes finis. En fonction des conditions aux limites du problème, une description locale de l'écoulement moteur est proposée via la mise en place et l'utilisation de lois d'évolution semi-empiriques. Le Macro-Elément est ensuite inséré dans le calcul CFD : les valeurs de la vitesse calculées par les lois d'évolution sont imposées aux cellules CFD correspondants au Macro-Elément. Nous appliquons ces deux approches sur cinq cas tests représentatifs en thermo-aéraulique du bâtiment. Les résultats sont confrontés à des données expérimentales et à des simulations numériques de type RANS traditionnelle. Nous mettons en évidence l'important gain de temps que notre approche permet d'obtenir, tout en conservant une bonne qualité de résultats numériques.
7

Etude de stratégies de ventilation pour améliorer la qualité environnementale intérieure et le confort des occupants en milieu scolaire / Study of ventilation strategies improving indoor environmental quality and comfort in scholar buildings

Dhalluin, Adrien 19 June 2012 (has links)
La ventilation est un secteur clé du bâtiment, dont le rôle est d’assurer un air sain et confortable toute l’année, ce qui est rarement le cas dans les bâtiments scolaires, tout en minimisant les consommations énergétiques. Nos travaux consistent à apporter des éléments de réponses et des pistes d’amélioration pour l’élaboration de stratégies de ventilation appropriées au milieu scolaire, à partir de travaux expérimentaux et numériques. Pour ce faire, quatre modes de ventilation (naturelle et mixte) ont été testés dans des salles de classes de l’Université de La Rochelle, et leurs performances ont été comparées via une évaluation multicritère basée sur les paramètres physiques caractérisant l’environnement intérieur, les indices de confort (subjectif, analytique et adaptatif) et des critères énergétiques. Des méthodes normatives de classification et des estimations de consommations énergétiques nous ont permis de conclure, que le système de ventilation naturelle par ouverture automatisée des fenêtres, contrôlé par la détection de présence et des paramètres thermiques (système SOS), est le meilleur compromis. Nous soumettons toutefois dans ce manuscrit, un certain nombre d’améliorations à apporter à ce système.Notre contribution porte également sur la connaissance des mécanismes du confort humain et en particulier ses réactions adaptatives, en définissant les conditions favorables au confort et en proposant des modèles prédictifs du confort global, de l’ajustement personnel ainsi que du contrôle individuel de l’ambiance par les occupants. Ces résultats ont notamment pour vocation d’améliorer la prise en compte des interactions entre les occupants et leur environnement dans les simulations numériques et pourraient également servir de base au développement d’une stratégie de ventilation optimisée. Au niveau numérique, nous proposons des simulations annuelles de quatre stratégies de ventilation, très proches de celles testées sur site, à l’aide d’un code thermo-aéraulique multizone (couplage Trnsys/Contam), que nous avons validé à partir de certaines séquences de mesures. En tenant compte d’un scénario d’occupation scolaire standard et du fichier météorologique correspondant à la station de La Rochelle, nous avons notamment montré qu’il est primordial de pré-chauffer l’air d’un système de ventilation mécanique, sous peine d’être confronté à des besoins de chauffage insurmontables. En introduisant une puissance de chauffage illimitée, permettant de maintenir une température minimale acceptable et ainsi de simuler des conditions d’enseignement réalistes, il apparaît que la meilleure qualité environnementale intérieure est à nouveau obtenue avec le système SOS. Notre modèle nous donne désormais la possibilité de multiplier les stratégies de ventilation, ainsi que les scénarios d’occupation, les conditions climatiques ou tout autre étude paramétrique, afin d’élaborer les meilleures stratégies de ventilation dans chaque configuration. / Ventilation is a key sector of building, whose role is to ensure healthy and comfortable air all over the year, which is rarely the case in school buildings, while minimizing energy consumption. Our work provides some answers and possible improvements for the development of appropriate ventilation strategies for schools, from experimental and numerical work.To achieve this, four modes of ventilation (natural and mixed ventilation modes) were tested in classrooms of the University of La Rochelle, and their performances were compared via a multicriteria evaluation based on the physical parameters characterizing the indoor environment, comfort indices (subjective, analytical and adaptive) and energy criteria. Normative methods of classification and estimates of energy consumption enabled us to conclude that the natural ventilation system by automated opening windows, controlled by the presence detection and thermal parameters (SOS), is the best compromise. However, we submit in this manuscript, some improvements to this system.Our contribution concerns also the understanding of the human comfort mechanisms and in particular its adaptive reactions, by defining the favorable conditions for a state of comfort and providing predictive models concerning overall comfort, personal adjustments and the individual control of the indoor environment by the occupants. These results aim to improve the consideration of the interactions between occupants and their environment in numerical simulations, and may serve as a basis for developing an optimized ventilation strategy.Numerically, we propose annual simulations of four ventilation strategies, very similar to those tested in situ, by using a combined heat and mass transfer multizone model (coupling Trnsys / CONTAM), that we have validated from selected experimental sequences. Taking into account a standard scenario of occupation and the annual weather conditions for La Rochelle, we have shown the importance to pre-heat the supplied air of a mechanical ventilation system, because of insurmountable heating demand consequences. By introducing an unlimited heating power, in order to maintain a minimum acceptable temperature and thus to simulate realistic learning conditions, it appears that the best indoor environmental quality is again obtained with the SOS system. Our model now gives us the possibility to increase the number of ventilation strategies, as well as the occupation scenarios, the weather conditions or any other parametric study in order to design the best ventilation strategies for each configuration.
8

High performance lattice Boltzmann solvers on massively parallel architectures with applications to building aeraulics / Implantations hautes performances de la méthode de Boltzmann sur gaz réseau. Applications à l'aéraulique des bâtiments

Obrecht, Christian 11 December 2012 (has links)
Avec l'émergence des bâtiments à haute efficacité énergétique, il est devenu indispensable de pouvoir prédire de manière fiable le comportement énergétique des bâtiments. Or, à l'heure actuelle, la prise en compte des effets thermo-aérauliques dans les modèles se cantonne le plus souvent à l'utilisation d'approches simplifiées voire empiriques qui ne sauraient atteindre la précision requise. Le recours à la simulation numérique des écoulements semble donc incontournable, mais il est limité par un coût calculatoire généralement prohibitif. L'utilisation conjointe d'approches innovantes telle que la méthode de Boltzmann sur gaz réseau (LBM) et d'outils de calcul massivement parallèles comme les processeurs graphiques (GPU) pourrait permettre de s'affranchir de ces limites. Le présent travail de recherche s'attache à en explorer les potentialités. La méthode de Boltzmann sur gaz réseau, qui repose sur une forme discrétisée de l'équation de Boltzmann, est une approche explicite qui jouit de nombreuses qualités : précision, stabilité, prise en compte de géométries complexes, etc. Elle constitue donc une alternative intéressante à la résolution directe des équations de Navier-Stokes par une méthode numérique classique. De par ses caractéristiques algorithmiques, elle se révèle bien adaptée au calcul parallèle. L'utilisation de processeurs graphiques pour mener des calculs généralistes est de plus en plus répandue dans le domaine du calcul intensif. Ces processeurs à l'architecture massivement parallèle offrent des performances inégalées à ce jour pour un coût relativement modéré. Néanmoins, nombre de contraintes matérielles en rendent la programmation complexe et les gains en termes de performances dépendent fortement de la nature de l'algorithme considéré. Dans le cas de la LBM, les implantations GPU affichent couramment des performances supérieures de deux ordres de grandeur à celle d'une implantation CPU séquentielle faiblement optimisée. Le mémoire de thèse présenté est constitué d'un ensemble de neuf articles de revues internationales et d'actes de conférences internationales (le dernier étant en cours d'évaluation). Dans ces travaux sont abordés les problématiques liées tant à l'implantation mono-GPU de la LBM et à l'optimisation des accès en mémoire, qu'aux implantations multi-GPU et à la modélisation des communications inter-GPU et inter-nœuds. En complément, sont détaillées diverses extensions à la LBM indispensables pour envisager une utilisation en thermo-aéraulique des bâtiments. Les cas d'études utilisés pour la validation des codes permettent de juger du fort potentiel de cette approche en pratique. / With the advent of low-energy buildings, the need for accurate building performance simulations has significantly increased. However, for the time being, the thermo-aeraulic effects are often taken into account through simplified or even empirical models, which fail to provide the expected accuracy. Resorting to computational fluid dynamics seems therefore unavoidable, but the required computational effort is in general prohibitive. The joint use of innovative approaches such as the lattice Boltzmann method (LBM) and massively parallel computing devices such as graphics processing units (GPUs) could help to overcome these limits. The present research work is devoted to explore the potential of such a strategy. The lattice Boltzmann method, which is based on a discretised version of the Boltzmann equation, is an explicit approach offering numerous attractive features: accuracy, stability, ability to handle complex geometries, etc. It is therefore an interesting alternative to the direct solving of the Navier-Stokes equations using classic numerical analysis. From an algorithmic standpoint, the LBM is well-suited for parallel implementations. The use of graphics processors to perform general purpose computations is increasingly widespread in high performance computing. These massively parallel circuits provide up to now unrivalled performance at a rather moderate cost. Yet, due to numerous hardware induced constraints, GPU programming is quite complex and the possible benefits in performance depend strongly on the algorithmic nature of the targeted application. For LBM, GPU implementations currently provide performance two orders of magnitude higher than a weakly optimised sequential CPU implementation. The present thesis consists of a collection of nine articles published in international journals and proceedings of international conferences (the last one being under review). These contributions address the issues related to single-GPU implementations of the LBM and the optimisation of memory accesses, as well as multi-GPU implementations and the modelling of inter-GPU and internode communication. In addition, we outline several extensions to the LBM, which appear essential to perform actual building thermo-aeraulic simulations. The test cases we used to validate our codes account for the strong potential of GPU LBM solvers in practice.

Page generated in 0.0627 seconds