• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude numérique et expérimentale du stockage d'énergie par les matériaux cimentaires / Numerical and experimental study of energy storage by cementitious materials

Ndiaye, Khadim 10 February 2016 (has links)
L'objectif de cette thèse est de développer un matériau cimentaire monolithe ayant une forte teneur en ettringite, capable de stocker et de déstocker de la chaleur, respectivement, par déshydratation endothermique et réhydratation exothermique. Une étude numérique et expérimentale du stockage de chaleur dans un réacteur thermochimique (prototype) contenant le matériau développé est aussi réalisée dans le cadre de cette étude. Pour atteindre ces objectifs, l'hydratation de différents liants ettringitiques a été suivie par DRX, ATG et MEB. Une simulation thermodynamique de l'hydratation a aussi été effectuée au moyen du logiciel GEMS (Gibbs Energy Minimization Sofware) afin d'optimiser la formulation du matériau. Le réseau poreux du matériau résultant a ensuite été amélioré par moussage chimique. Nous avons aussi étudié la durabilité et la stabilité du matériau ettringitique synthétisé (carbonatation, stabilité à la température, réversibilité du processus de stockage/déstockage sur plusieurs cycles). Pour prédire le comportement du système de stockage, un modèle bidimensionnel, prenant en compte les spécificités du matériau cimentaire, a été utilisé. Le bilan énergétique et massique dans le matériau poreux génère un système d'équations différentielles non-linéaires et couplées. La résolution numérique du système, effectuée en utilisant MatLab (r), est effectuée par discrétisation spatiale en utilisant la méthode des différences finies, et par intégration temporelle des variables d'état (température et pression de vapeur d'eau). La simulation du modèle, basée sur les propriétés mesurées du matériau en laboratoire, est ensuite utilisée comme outil de conception pour réaliser un premier prototype de réacteur thermochimique au laboratoire. Suite à ces essais, un prototype amélioré est ensuite élaboré et testé. Le résultat des essais de stockage et de déstockage de chaleur avec ces deux prototypes ont servi de validation du modèle numérique d'une part, et de preuve de concept du principe de stockage d'autre part. / The objective of this study is to develop an ettringite-based material with high energy storage density in low temperature conditions, allowing to charge and discharge heat by endothermic dehydration and exothermic rehydration, respectively; then to perform the numerical and experimental study of heat storage in a thermochemical reactor containing the produced material (prototype). To achieve these goals, the hydration of ettringite binders was followed by XRD, TGA and SEM. The thermodynamic simulation of the hydration was also performed using GEMS (Gibbs Energy Minimization Sofware). The porous network of the resulting material was improved by chemical foaming. Furthermore, the carbonation, thermal stability and reversibility tests were performed on the produced material. Physicochemical stability of the material over time was followed by XRD, TGA, SEM and IR. To predict the behavior of the storage system, a bidimensional model, taking account the specificities of the cementitious material, was developed. The heat and mass balance in the thermochemical reactor generates a system of non-linear and coupled differential equations. The numerical resolution was first made by spatial discretization using the finite difference method, then by temporal integration of variables (temperature and water vapor pressure) on MatLab (r). The model simulation, with material properties, was used as concept design to build the thermochemical reactor prototype in the laboratory (cylindrical adsorber). The result of heat storage tests with the prototype was used as proof of concept of the principle on the one hand, and a way to validate the numerical model.
2

Aufbau und Inbetriebahme eines Teststandes mit bewegtem Reaktionsbett zur thermochemischen Wärmespeicherung

Ramm, Nico 26 May 2015 (has links) (PDF)
Für den ökonomischen Erfolg konzentrierender Solarkraftwerke und für die Effizienz-steigerung der Industrie durch Weiterverwendung von Abwärme sind skalierbare Hochtemperatur-Wärmespeicher zu vertretbaren Kosten unabdingbar. Bisher sind für dieses Anwendungsgebiet nur sensible Speicher kommerziell verfügbar. Denen gegenüber besitzen chemische Speicher zahlreiche Vorteile. Sie bieten höhere Speicherdichten, geringere Wärmeverluste, die Möglichkeit zur Wärmetransformation durch Variation des Reaktionsdrucks und eine Vielzahl von Reaktionssystemen für eine optimale Prozess-integration. Jedoch befinden sie sich noch in der Entwicklungsphase. Die reversible Gas-/Feststoffreaktion von Calciumoxid und Wasserdampf zu Calcium-hydroxid geschieht bei Temperaturen von 400 – 600 °C und ist damit optimal für solarthermische Anwendungen geeignet. Für die Entwicklung eines Speichers ist neben der thermochemischen Charakterisierung des Speichermaterials ein effizientes, skalierbares Reaktorkonzept nötig. Ein Reaktor mit bewegtem Reaktionsbett ermöglicht die Trennung der zwei charakteristischen Speichergrößen Leistung und Kapazität und stellt damit einen wirtschaftlichen Speicher in Aussicht. Die vorliegende Arbeit befasst sich mit Aufbau und Inbetriebnahme eines neuen Teststandes, in welchem ein innovatives Reaktordesign erprobt werden soll. Sie beschreibt die Auslegung einer planaren Reaktorgeometrie, die einen Schwerkraftfluss des Bettes und die Modularisierung für größere Anlagen gewährleistet. Bei Vorversuchen stellt sich die homo-gene Bewegung des Reaktionsbettes aufgrund dessen Kompressibilität als schwierig heraus. Der angestrebte homogene Massenfluss des Reaktionsmaterials kann durch die ursprünglich eingesetzten Feindosiereinheiten nicht erzielt werden. Sie zeigen sich jedoch für die Temperierung des Speichermediums und die Gasdichtheit des Reaktionsraumes als geeignet. Das homogene Ausfließen wird einer separaten Austragshilfe zugeteilt, welche konstruiert und umgesetzt wird. Experimente mit einem Schaureaktor identifizieren eine Zahnwelle als beste Option. Für einen kommerziellen Speicher wird ein Schlitzschieber empfohlen. Ebenso erfolgen Auslegung und Errichtung der peripheren Anlagenteile, wie z.B. die Fertigung eines Druckhalters zur Steuerung der Reaktionstemperatur. Am Teststand werden somit alle Vorbereitungen abgeschlossen, um Heißversuche bei Reaktionstemperatur durchzuführen.
3

Stockage de chaleur inter-saisonnier par voie thermochimique pour le chauffage solaire de la maison individuelle / Inter-seasonal thermal energy storage based on a thermochemical process for solar space heating of single-family houses

Hongois, Stéphanie 01 April 2011 (has links)
Les actions conjointes en faveur d’une meilleure isolation du bâti et de l’expansion des énergies renouvelables dans l’habitat jouent un rôle de premier plan dans la politique de réduction des gaz à effet de serre et la recherche d’une plus grande efficacité énergétique. La présente thèse vise à développer un système de stockage de chaleur par voie thermochimique dédié au chauffage solaire d’une maison individuelle. A cet effet, un matériau de stockage spécifique à été mis au point, à base de zéolithe et de sulfate de magnésium. Le principe, reposant sur un phénomène mixte d’adsorption physique de vapeur d’eau et de réaction chimique d’hydratation, est à caractère inter-saisonnier : en été, la chaleur issue de capteurs solaires thermiques à air est stockée par le matériau, qui se déshydrate selon une réaction endothermique ; en hiver, l’exothermicité de la réaction inverse est exploitée afin de chauffer l’habitat. Après un état de l’art des technologies de stockage thermique, un protocole de préparation de ce matériau composite innovant est établi. Des travaux de caractérisation sont alors entrepris à l’échelle micro et macroscopique. A partir de ces données expérimentales macroscopiques, le système de stockage est dimensionné en fonction des besoins en chaleur pour le chauffage d’une maison individuelle de type Bâtiment Basse Consommation. A l’issue de cette étude, un modèle de réacteur de stockage thermique est élaboré, afin d’interpréter les transferts couplés de matière et de chaleur intervenant dans le lit de matériau et d’optimiser le réacteur de stockage en conséquence. La validité du modèle est ensuite testée et discutée à la lumière des résultats expérimentaux. / The combined efforts promoting an improved insulation and a growth of renewable energies use in buildings play a key role in the road towards greenhouse gas reduction and better energy efficiency. This thesis purpose is to develop a chemicalbased thermal energy storage system devoted to solar space heating of single-family houses. A specific heat storage material has thus been created, made of zeolite and magnesium sulphate. The storage principle, based on a hybrid phenomenon between water vapour physical adsorption and chemical hydration reaction, is seasonal : during the summer, the material stores heat obtained from evacuated tube solar collectors using an endothermic dehydration reaction ; the stored heat is released by rehydration of the material during the winter to produce hot air dedicated to space heating. After a state of the art regarding thermal energy storage technologies, a preparation method is set up. Then, characterization studies of this innovative composite material have been performed, at both micro- and macroscopic scales. Thanks to the macroscopic experimental data, the system size is estimated to meet the space heating energy demand of a low energy single-family house. Afterwards, a thermochemical storage model is developed to understand the coupled heat and mass transfer occurring in the composite sorbent bed, and consequently optimize the reactor design. The model relevancy is finally discussed with respect to experimental results.
4

Aufbau und Inbetriebahme eines Teststandes mit bewegtem Reaktionsbett zur thermochemischen Wärmespeicherung

Ramm, Nico 26 May 2015 (has links)
Für den ökonomischen Erfolg konzentrierender Solarkraftwerke und für die Effizienz-steigerung der Industrie durch Weiterverwendung von Abwärme sind skalierbare Hochtemperatur-Wärmespeicher zu vertretbaren Kosten unabdingbar. Bisher sind für dieses Anwendungsgebiet nur sensible Speicher kommerziell verfügbar. Denen gegenüber besitzen chemische Speicher zahlreiche Vorteile. Sie bieten höhere Speicherdichten, geringere Wärmeverluste, die Möglichkeit zur Wärmetransformation durch Variation des Reaktionsdrucks und eine Vielzahl von Reaktionssystemen für eine optimale Prozess-integration. Jedoch befinden sie sich noch in der Entwicklungsphase. Die reversible Gas-/Feststoffreaktion von Calciumoxid und Wasserdampf zu Calcium-hydroxid geschieht bei Temperaturen von 400 – 600 °C und ist damit optimal für solarthermische Anwendungen geeignet. Für die Entwicklung eines Speichers ist neben der thermochemischen Charakterisierung des Speichermaterials ein effizientes, skalierbares Reaktorkonzept nötig. Ein Reaktor mit bewegtem Reaktionsbett ermöglicht die Trennung der zwei charakteristischen Speichergrößen Leistung und Kapazität und stellt damit einen wirtschaftlichen Speicher in Aussicht. Die vorliegende Arbeit befasst sich mit Aufbau und Inbetriebnahme eines neuen Teststandes, in welchem ein innovatives Reaktordesign erprobt werden soll. Sie beschreibt die Auslegung einer planaren Reaktorgeometrie, die einen Schwerkraftfluss des Bettes und die Modularisierung für größere Anlagen gewährleistet. Bei Vorversuchen stellt sich die homo-gene Bewegung des Reaktionsbettes aufgrund dessen Kompressibilität als schwierig heraus. Der angestrebte homogene Massenfluss des Reaktionsmaterials kann durch die ursprünglich eingesetzten Feindosiereinheiten nicht erzielt werden. Sie zeigen sich jedoch für die Temperierung des Speichermediums und die Gasdichtheit des Reaktionsraumes als geeignet. Das homogene Ausfließen wird einer separaten Austragshilfe zugeteilt, welche konstruiert und umgesetzt wird. Experimente mit einem Schaureaktor identifizieren eine Zahnwelle als beste Option. Für einen kommerziellen Speicher wird ein Schlitzschieber empfohlen. Ebenso erfolgen Auslegung und Errichtung der peripheren Anlagenteile, wie z.B. die Fertigung eines Druckhalters zur Steuerung der Reaktionstemperatur. Am Teststand werden somit alle Vorbereitungen abgeschlossen, um Heißversuche bei Reaktionstemperatur durchzuführen.:Kurzfassung.....................................................................II Aufgabenstellung ..............................................................III Inhaltsverzeichnis ..............................................................V Nomenklatur ...................................................................VII Abbildungs- und Tabellenverzeichnis ............................................IX Vorwort ........................................................................XI 1 Einleitung ................................................................... 1 2 Theorie thermischer Energiespeicher .......................................... 3 2.1 Beschreibung von Wärmespeichern ............................................ 3 2.2 Sensible Wärmespeicher ..................................................... 4 2.3 Latente Wärmespeicher....................................................... 9 2.4 Sorptive Wärmespeicher .....................................................12 2.5 Chemische Wärmespeicher ....................................................14 3 Spezifikation des thermochemischen Speichersystems ...........................17 3.1 Thermochemische Grundlagen .................................................17 3.2 Motivation der Aufgabenstellung ............................................20 3.3 Charakterisierung des Reaktionssystems .....................................21 4 Systembeschreibung des Speicherkonzepts ......................................26 4.1 Kurzdarstellung der Ausgangssituation ......................................26 4.2 Weiterentwicklung zum bewegten Reaktionsbett ...............................27 4.2.1 Theorie des bewegten Reaktionsbettes .....................................27 4.2.2 Konstruktion des Reaktors ................................................28 4.2.3 Förderung des Speichermaterials ..........................................31 4.3 Periphere Anlagenteile .....................................................33 4.3.1 Anlagenschema ............................................................33 4.3.2 Entwurf des Druckhalters .................................................35 INHALTSVERZEICHNIS VI 4.3.3 Ausführung der Elektro- und Messtechnik ..................................37 5 Experimentelle Untersuchungen ................................................39 5.1 Versuchsdurchführung .......................................................39 5.2 Betrieb der Fördereinheiten ................................................40 5.3 Optimierung der Fördereinheiten ............................................44 5.3.1 Inaktive Mischpaddel .....................................................44 5.3.2 Modifizierte Mischpaddel .................................................47 5.4 Erkenntnisse ...............................................................49 6 Finales Konzept des Versuchsstandes ..........................................50 6.1 Lösungsansätze für den Massenfluss .........................................50 6.2 Gestaltung der Austragshilfe ...............................................54 7 Zusammenfassung und Ausblick .................................................57 Eidesstattliche Erklärung ......................................................59 Literatur- und Quellenverzeichnis ..............................................60 Anlagen ........................................................................63 A.1. Parametrierung des Temperaturwächters (Kapitel 4.3.3) .....................63 A.2. Inhalt des beigelegten Datenträgers (Einband) .............................63 A.3. Berechnung der Aufheizstrecke des Stickstoffstroms (Kapitel 4.3.1) ........64 A.4. Konstruktionszeichnung des Druckhalters (Kapitel 4.3.2) ...................65 A.5. Dampftafel: Sättigungsdampfdruck von Wasserdampf (Kapitel 4.3.2) ..........66 A.6. Stromlaufpläne und Baugruppenliste des Teststandes (Kapitel 4.3.3) ... ....67 A.7. Ermittlung der Kabelquerschnitte für Stromlaufplan (Kapitel 4.3.3) ........73 A.8. Parametrierung der Frequenzumrichter (Kapitel 5.1) ....................... 74 A.9. Ergebnisse der Kalibiermessungen (Kapitel 5.2) ............................75 A.10. Berechnungen zur Dynamik des Schlitzschiebers (Kapitel 6.1) ............. 76 A.11. Konstruktionszeichnungen der Austragshilfe (Kapitel 6.2) .................77
5

Stockage de chaleur dans l'habitat par sorption zéolite/H2O / Thermal storage for housing through zeolite/H2O sorption

Metchueng Kamdem, Syntia 09 June 2016 (has links)
Le couple zéolite/H2O, qui présente une densité énergétique importante et remplit les conditions d’innocuité requises pour un système de stockage de chaleur pour l’habitat, est mis en œuvre dans réacteur modulaire à lit fixe. Un modèle monodimensionnel de transferts couplés de masse et de chaleur dans un lit fixe de grains de zéolite parcourus par un flux d'air humide été élaboré. Ce dernier a été conçu de façon à pouvoir intégrer rapidement des données sur de nouvelles générations de matériaux et coupler le réacteur à d’autres modèles : bâtiment/sous-station/quartier. L'étape de validation expérimentale montre que le modèle permet une estimation satisfaisante de l'autonomie, la durée d'amorçage et la puissance moyenne fournie en phase de décharge ainsi que la durée de charge. Ce modèle est donc un bon outil de dimensionnement et de pilotage du réacteur. L'analyse de sensibilité a montré que l'amélioration des prévisions du modèle requiert une évaluation plus précise de la chaleur complémentaire de sorption et de la porosité du lit. Après avoir estimé les besoins de chauffage d'une maison BBC deux dimensionnements ont été proposés afin d'effacer soit l'hyper-pointe de 18h - 20h soit la semaine la plus froide. Si la première stratégie aboutit à un système de stockage plus compact, la seconde permet de réduire le nombre de cycles marche/arrêt. Pour un îlot de 50 maisons BBC, la notion de foisonnement est considérée lors de l'estimation des besoins en chauffage pendant la semaine la plus froide. La phase de charge du système de stockage se ferait par le biais de la chaleur fatale récupérée dans l'industrie. Pour des stratégies d'effacement similaires (semaine la plus froide en hiver), un volume équivalent de 544 litres par maison dans l'îlot suffit pour répondre aux besoins de chauffage à Nancy contre 580 litres pour une maison BBC seule. / Heat storage systems for residential house heating could contribute to smoothing the load curve and would help prevent the use of the most polluting power plants or electricity imports during consumption peaks. Thermochemical heat storage systems are suitable for the intended application since they have high energy densities and low thermal losses. This thesis focuses on the design of an adsorption heat storage system that would be used to shed the load curve of the heating device of a house or residential district during the winter peak consumption periods. The zeolite/H2O pair, which has interesting features such as a high energy density and meets the conditions of safety required for a heat storage system for housing, is implemented in a modular fixed bed reactor. A 1D pseudo-homogeneous model was developed in order to simulate the performance of a fixed bed of zeolite during the adsorption and desorption of water. The latter was designed so as to facilitate the integration of data on new generations of materials and model couplings. The need to obtain data on the sorption properties of the zeolite/H2O pair to have reliable simulation results has been demonstrated, particularly at low partial pressures of water vapor and under the operating conditions selected. The experimental validation phase shows that the pseudo-homogeneous model provides a satisfactory estimate of criteria such as the autonomy, the responsiveness and the average power delivered during the discharging phase and the charging time. The model is thus a good sizing and management tool of the reactor. A sensitivity analysis, with the method of Morris, showed that improved model estimates require a more accurate assessment of the additional heat of sorption and porosity of the bed. After assessing the heating needs of the LEB house with a thermal model of the latter in cold climate conditions, two heat storage reactors were sized in order to shed the heating system's load curve either between 6 and 8pm or during the coldest week of the year. While the first strategy results in a more compact storage system, the second makes it possible to reduce the number of on/off cycles. The need for predictive control for monitoring the storage system was highlighted. As for the residential district of 50 LEB houses, diversity is considered when estimating the heating needs of the latter during the coldest week in Nancy. The heat source during the charging phase of the container would be industrial waste heat. During the coldest week, two sizings are suggested. For similar load shedding strategies, the comparison of the equivalent storage volume per house in the district with the storage volume for a single house serves highlights the importance of taking into account diversity. In order to meet the heating needs in Nancy, an equivalent volume of 544 liters per house in the district is sufficient whereas 580 liters are needed for a LEB house.
6

Résolution et réduction d'un modèle non-linéaire de stockage d'énergie par adsorption sur des zéolithes / Resolution and reduction of a non-linear energy storage model by adsorption on zeolites

Duquesne, Marie 11 January 2013 (has links)
Les sources d’énergies renouvelables représentent un gisement intéressant mais l’intermittence de leur production impose une meilleure anticipation des besoins et la mise en place d’un système de stockage d’énergie. Le stockage thermochimique par adsorption dans un système intégrant le couple zéolithe 13X/eau semble être une solution adaptée à un stockage de l’énergie à basse température pour une application aux bâtiments. Notre objectif consiste à reproduire le comportement de ce type de problèmes thermiques non-linéaires. En effet, une simulation précise et rapide du comportement du système sélectionné permettrait une régulation lors de son utilisation. Un modèle bidimensionnel de stockage d’énergie dans un adsorbeur cylindrique a été développé. La résolution numérique de ce modèle, dit d’ordre élevé, implique l’intégration d’un système de quelques centaines à quelques milliers d’équations fortement non-linéaires et couplés. Les coûts de calculs générés pouvant être prohibitifs, l’application d’une méthode de réduction a ainsi été envisagée afin de conserver les caractéristiques, le couplage des transferts de chaleur et de masse ainsi que les non-linéarités de ce modèle tout en limitant le temps de calculs. La projection de Galerkin des équations de ce dernier sur la base, obtenue grâce à une décomposition orthogonale aux valeurs propres, permet de construire un système dynamique d’ordre faible. Sa résolution est moins coûteuse que celle du modèle d’ordre élevé et reproduit correctement la dynamique de l’adsorbeur. / Renewable energy sources will play a key role in meeting future energy demand. One major criticism of those sources stands in their intermittency requiring both a more effective management of demand and efficient storage systems. We focus on thermo-chemical storage by adsorption-desorption mechanism. Eco friendly, economically viable and suitable with solar energy temperature range made the zeolite 13X - water pair ideal for buildings applications. We built an energy storage model in a cylindrical adsorber which contains the mentioned zeolite13X - water pair. Energy storage has been modeled to present coupled heat and mass transfers thanks to a bi-dimensional model. The numerical simulations lead to the time-space evolution of the heating fluid and adsorbent temperatures and pressure. These knowledge models include typically a great amount of coupled differential equations to solve and strong non linearities. The originality of this study is to build a knowledge model of coupled heat and mass transfer in an adsorber and use the Proper Orthogonal Decomposition (POD) and Galerkin projection to build a minimal model of lower dimension without significant loose of accuracy.

Page generated in 0.071 seconds