• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 69
  • 35
  • 32
  • 16
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 474
  • 103
  • 89
  • 73
  • 69
  • 61
  • 58
  • 53
  • 49
  • 45
  • 41
  • 37
  • 37
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Technoeconomic Analysis of Textured Surfaces for Improved Condenser Performance in Thermoelectric Power Plants

Shoaei, Parisa Daghigh 19 January 2021 (has links)
Nonwetting surfaces including superhydrophobic (SHS) and liquid infused surfaces (SLIPS) exhibit diverse exceptional characteristics promoting numerous application opportunities. Engineered textured surfaces demonstrate multiple features including drag reduction, fouling reduction, corrosion resistance, anti-fogging, anti-icing, and condensation enhancement. Integrating these properties, nonwetting surfaces have shown significant potential in improving the efficiency of energy applications. The first part of the thesis work aims at developing a fundamental mathematical understanding of the wetting process on the solid surface followed by presenting fabrication methodologies specifically focused on metallic substrates. The second part of this thesis presents an exhaustive survey on recent advancements and researches about features of nonwetting surfaces that could be implemented in major industrial applications. To establish how realistically these features could enhance the real-life applications, the third part of this work investigates the dynamic performance and economic benefits of using textured surfaces fabricated using an electrodeposition process for condenser tubes in thermoelectric power plants. The textured surfaces are expected to provide enhanced performance by deterring fouling and promoting dropwise condensation of the steam on the shell side. Using a thermal resistance network of a shell and tube condenser, detailed parametric studies are carried out to investigate the effect of various design parameters on the annual condenser performance measured in terms of its electric energy output of a representative 550 MW coal-fired power plant. A cost modeling tool and a new Levelized cost of condenser (LCOC) metric have been developed to evaluate the economic and performance benefits of enhanced condenser designs. The LCOC is defined as the ratio of the lifetime cost of the condenser (and associated costs such as coating, operation and maintenance) to the total electric energy produced by the thermoelectric power plant. The physical model is coupled with a numerical optimization method to identify the optimal design and operating parameters of the textured tubes that minimizes LCOC. Altogether, the study presents the first effort to construct and analyze enhanced condenser design with textured tube surfaces on annual thermoelectric power plant performance and compares it against the baseline condenser design with plain tubes. / Master of Science / Liquid repellant surfaces have attracted lots of attention due to their numerous promising characteristics including promoting condensation, drag reduction, prohibiting fouling/deposition, corrosion, and fog/dew harvesting. These attributes have the potential to inspire a variety of applications for these surfaces in power plants, automotive and aviation industries, oils/organic solvents clean-up, fuel cells, solar panels, membrane distillation, stone/concrete protection, surgical fabrics, and biological applications, to name a few. Some of these applications have reached their potential for real-life implementation and more are still at the research phase needing more experimental and fundamental studies to get them ready. The first part of this study presents the fundamentals of the wetting process. Next, fabrication methods for metallic surfaces have been explored to identify the most scalable and cost-effective approaches which could be administered in large scale industrial applications. A comprehensive review of recent publications on features of nonwetting surfaces has been carried out and presented in the second part of this thesis. To establish how realistically these features could enhance the real-life applications of a thermo-economic a performance model is developed for a powerplant condenser in the third section. Through a simple and cost-effective electrodeposition process, the common condenser tubes are modified to achieve textured tubes with superhydrophobic properties. The influence of using textured tubes on the plant's performance and its economic benefits are investigated to predict the potential promises of nonwetting surfaces.
302

Development and Design of Self-Sensing SMAs using Thermoelectric Effect

Malladi, Vijaya Venkata Narasimha Sriram 17 June 2013 (has links)
Active research of SMAs has shown that its Seebeck coefficient is sensitive to its martensitic phase transformation and has the potential to determine the SMAs state of transformation. The combination of Shape Memory Alloys, which have a positive Seebeck coefficient, and Constantan which has a negative Seebeck coefficient (-35 mV/K) results in a thermocouple capable of measuring temperature. The work presented in this thesis is based on the development and design of this sensor. This sensor is used to study the hysteretic behaviour of SMAs. Although Shape Memory Alloys (SMAs) exhibit a myriad of nonlinearities, SMAs show two major types of nonlinear hysteresis. During cyclic loading of the SMAs, it is observed that one type of hysteretic behavior depends on the rate of heating the SMAs, whilst the variation of maximum temperature of an SMA in each cycle results in the other hysteretic behavior. This later hysteretic behavior gives rise to major and minor nonlinear loops of SMAs. The present work analyzes the nonlinearities of hysteretic envelopes which gives the different maximum temperatures reached for each hysteretic cycle with respect to stress and strain of the SMA. This work then models this behavior using Adaptive Neuro Fuzzy Inference System (ANFIS) and compares it to experimental results. The nonlinear learning and adaptation of ANFIS architecture makes it suitable to model the temperature path hysteresis of SMAs. / Master of Science
303

Numerical and Experimental Design of High Performance Heat Exchanger System for A Thermoelectric Power Generator for Implementation in Automobile Exhaust Gas Waste Heat Recovery

Pandit, Jaideep 07 May 2014 (has links)
The effects of greenhouse gases have seen a significant rise in recent years due to the use of fossil fuels like gasoline and diesel. Conversion of the energy stored in these fossil fuels to mechanical work is an extremely inefficient process which results in a high amount of energy rejected in the form of waste heat. Thermoelectric materials are able to harness this waste heat energy and convert it to electrical power. Thermoelectric devices work on the principle of the Seebeck effect, which states that if two junctions of dissimilar materials are at different temperatures, an electrical potential is developed across them. Even though these devices have small efficiencies, they are still an extremely effective way of converting low grade waste heat to usable electrical power. These devices have the added advantage of having no moving parts (solid state) which contributes to a long life of the device without needing much maintenance. The performance of thermoelectric generators is dependent on a non-dimensional figure of merit, ZT. Extensive research, both past and ongoing, is focused on improving the thermoelectric generator's (TEG's) performance by improving this figure of merit, ZT, by way of controlling the material properties. This research is usually incremental and the high performance materials developed can be cost prohibitive. The focus of this study has been to improve the performance of thermoelectric generator by way of improving the heat transfer from the exhaust gases to the TEG and also the heat transfer from TEG to the coolant. Apart from the figure of merit ZT, the performance of the TEG is also a function of the temperature difference across it, By improving the heat transfer between the TEG and the working fluid, a higher temperature gradient can be achieved across it, resulting in higher heat flux and improved efficiency from the system. This area has been largely neglected as a source of improvement in past research and has immense potential to be a low cost performance enhancer in such systems. Improvements made through this avenue, also have the advantage of being applicable regardless of the material in the system. Thus these high performance heat exchangers can be coupled with high performance materials to supplement the gains made by improved figure of merits. The heat exchanger designs developed and studied in this work have taken into account several considerations, like pressure drop, varying engine speeds, location of the system along the fuel path, system stability etc. A comprehensive treatment is presented here which includes 3D conjugate heat transfer modeling with RANS based turbulence models on such a system. Various heat transfer enhancement features are implemented in the system and studied numerically as well as experimentally. The entire system is also studied experimentally in a scaled down setup which provided data for validation of numerical studies. With the help of measured and calculated data like temperature, ZT etc, predictions are also presented about key metrics of system performance. / Ph. D.
304

Evaluation of Internal Fin Geometry for Heat Transfer Enhancement in Automobile Exhaust Energy Harvesting Systems

Athavale, Jayati Deepak 11 January 2014 (has links)
Thermoelectric generators (TEGs) are currently being explored for their potential in harvesting energy from automobile exhaust. TEGs in form of an appropriate TEG- Heat exchanger module can utilize the temperature difference between the hot exhaust gases and the automobile coolant and convert it into electrical voltage. The amount of power is anticipated to be a few hundred watts depending on the temperature gradient and the material of the TEGs. The focus of this study is increasing the hot side heat transfer for improved performance of the thermoelectric generators using two different internal fins — louvered fins and herringbone wavy fins. The multi-louvered fins basically have 'multi flat plate' behavior and will enhance the heat transfer by deflecting the air from its original path and aligning it with the plane of the louvers. Herringbone fins are used to lengthen the path of airflow allowing for greater residence time and better mixing of the flow. They also provide for greater wetted surface area achieving higher heat transfer. The flow and heat transfer behavior inside the exhaust pipe test section with internal fins is modeled using commercial numerical software. The thermal and flow behavior through both these internal fins depends to a large extent on geometric parameters and fin arrangement. Optimization of the fin design is considered to determine the configuration that provides highest heat transfer while providing least pressure drop across the pipe length. The heat transfer and pressure drop characteristics are compared to the baseline flow without any fin enhancement. / Master of Science
305

Feasibility of using Waste Heat as a power source to operate Microbial Electrolysis Cells towards Resource Recovery

Jain, Akshay 05 May 2020 (has links)
Wastewater treatment has developed as a mature technology over time. However, conventional wastewater treatment is a very energy-intensive process. Bioelectrochemical system (BES) is an emerging technology that can treat wastewater and also recover resources such as energy in the form of electricity/hydrogen gas and nutrients such as nitrogen and phosphorus compounds. Microbial electrolysis cell (MEC) is a type of BES that, in the presence of an additional voltage, can treat wastewater and generate hydrogen gas. This is a promising approach for wastewater treatment and value-added product generation, though it may not be sustainable in the long run, as it relies on fossil fuels to provide that additional energy. Thus, it is important to explore alternative renewable resources that can provide energy to power MEC. Waste heat is one such resource that has not been researched extensively, particularly at the low-temperature spectrum. This was utilized as a renewable resource by converting waste heat to electricity using a device called thermoelectric generator (TEG). TEG converted simulated waste heat from an anaerobic digester to power an MEC. The feasibility of TEG to act as a power source for an MEC was investigated and its performance compared to the external power source. Various cold sources were analyzed to characterize TEG performance. To explore this integrated TEG-MEC system further, a hydraulic connection was added between the two systems. Wastewater was used as a cold source for TEG and it was recirculated to the anode of the MEC. This system showed improved performance with both systems mutually benefitting each other. The operational parameters were analyzed for the optimization of the system. The integrated system could generate hydrogen at a rate of 0.36 ± 0.05 m3 m-3 d-1 for synthetic domestic wastewater treatment. For the practical application, it is necessary to estimate the cost and narrow the focus on the functions of the system. Techno-economic analysis was performed for MEC with cost estimation and net present value model to understand the economic viability of the technology. The application niche of the BES was described and directions for addressing the challenges towards a full-scale operation were discussed. The present system provides a sustainable method for wastewater treatment and resource recovery which can play an important role in human health, social and economic development and a strong ecosystem. / Doctor of Philosophy / An average person produces about 50-75 gallons of wastewater every day. In addition to the households, wastewater is generated from industries and agricultural practices. As the population increases, the quantity of wastewater production will inevitably increase. To keep our rivers and oceans clean and safe, it is essential to treat the wastewater before it is discharged to the water bodies. However, the conventional wastewater treatment is a very energy (and thus cost) intensive process. For low-income and developing parts of the world, it is difficult to adapt the technology everywhere in its present form. Furthermore, as the energy is provided mostly by fossil fuels, their limited reserves and harmful environmental effects make it critical to find alternative methods that can treat the wastewater at a much lower energy input. For a circular and sustainable economy, it is important to realize wastewater as a resource which can provide us energy, nutrients, and water, rather than discard it as a waste. Bioelectrochemical systems (BES) is an emerging technology that can simultaneously treat wastewater and recover resources in the form of electricity/hydrogen gas, and nitrogen and phosphorus compounds. Microbial electrolysis cell (MEC) is a type of BES that is used to treat wastewater and generate hydrogen gas. An additional voltage is supplied to the MEC for producing hydrogen. In the long run, this may not be sustainable as it relies on fossil fuels to provide that additional energy. Thus, it is important to explore alternative renewable resources that can provide energy to power MEC. Waste heat is a byproduct of many industrial processes and widely available. This was utilized as a renewable resource by converting waste heat to electricity using a device called thermoelectric generator (TEG). TEG converted simulated waste heat from an anaerobic digester to power an MEC. The mutual benefit for MEC and TEG was also explored by connecting the system electrically and hydraulically. Cost-estimation of the system was performed to understand the economic viability and functions of the system were developed. The present system provides a sustainable method for wastewater treatment and resource recovery which can play an important role in human health, social and economic development and a strong ecosystem.
306

System Design, Fabrication, and Characterization of Thermoelectric and Thermal Interface Materials for Thermoelectric Devices

Wang, Jue 13 June 2018 (has links)
Thermoelectric devices are useful for a variety of applications due to their ability to either convert heat directly into electricity, or to generate a temperature gradient from an electric current. These devices offer several attractive features including compact size, no moving parts, limited maintenance requirements, and high reliability. Thus thermoelectric devices are used for temperature-control, cooling, or power generation in various industrial systems such as automobiles, avionics, refrigerators, chillers, laser diodes, dehumidifiers, and a variety of sensors. In order to improve the efficiency of thermoelectric devices, many endeavors have been made to design and fabricate materials with a higher dimensionless thermoelectric figure of merit (ZT), as well as to optimize the device structure and packaging to manage heat more effectively. When evaluating candidate thermoelectric materials, one must accurately characterize the electrical conductivity, thermal conductivity, and the Seebeck coefficient over the temperature range of potential use. However, despite considerable research on thermoelectric materials for decades, there is still significant scatter and disagreement in the literature regarding accurate characterization of these properties due to inherent difficulties in the measurements such as requirements for precise control of temperature, simultaneous evaluation of voltage and temperature, etc. Thus, a well-designed and well-calibrated thermoelectric measurement system that can meet the requirements needed for multiple kinds of thermoelectric materials is an essential tool for the development of advanced thermoelectric devices. In this dissertation, I discuss the design, fabrication, and validation of a measurement system that can rapidly and accurately evaluate the Seebeck coefficient and electrical resistivity of thermoelectric materials of various shapes and sizes from room temperature up to 600 K. The methodology for the Seebeck coefficient and electrical resistivity measurements is examined along with the optimization and application of both in the measurement system. The calibration process is completed by a standard thermoelectric material and several other materials, which demonstrates the accuracy and reliability of the system. While a great deal of prior research has focused on low temperature thermoelectric materials for cooling, such as Bi2Te3, high temperature thermoelectric materials are receiving increasing attention for power generation. With the addition of commercial systems for the Seebeck coefficient, electrical resistivity, and thermal conductivity measurements to expand the temperature range for evaluation, a wide range of materials can be studied and characterized. Chapter Two of this dissertation describes the physical properties characterization of a variety of thermoelectric materials, including room temperature materials such as Bi0.5Sb1.5Te3, medium temperature level materials such as skutterudites, and materials for high temperature applications such as half-Heusler alloys. In addition, I discuss the characterization of unique oxide thermoelectric materials, which are Al doped ZnO and Ca-Co-O systems for high temperature applications. Chapter Four of this dissertation addresses the use of GaSn alloys as a thermal interface material (TIM), to improve thermal transport between thermoelectric devices and heat sinks for power generation applications at high temperature. I discuss the mechanical and thermal behavior of GaSn as an interface material between electrically insulating AlN and Inconel heat exchangers at temperatures up to 600 °C. Additionally, a theoretical model for the experimental thermal performances of the GaSn interface layer is also examined. / Ph. D. / Thermoelectric materials can directly convert heat into electricity for power generation, or they can be used for cooling or refrigeration applications when supplied with electric power. This dissertation primarily focuses on the evaluation of materials used in thermoelectric generators (TEGs). Specifically, Chapter Two of this work describes the design, development, and validation of a developed measurement system that can evaluate two important properties, the Seebeck coefficient and electrical resistivity, for a variety of thermoelectric materials. Next, Chapter Three discusses the work using other commercial measurement systems to evaluate several types of thermoelectric materials, including Bi2Te3 based materials, skutterudites, half-Heusler alloys, ZnO, and Ca-Co-O for a TEG module. Finally, I discuss the use of GaSn, a liquid metal alloy, as a thermal interface material to improve heat transport between dissimilar materials for TEGs. The GaSn was applied between a thermoelectric device and a heat exchanger for use in energy harvesting devices. The mechanical robustness and thermal reliability were tested, and the GaSn was shown to improve thermal performances both in experiments and through modeling.
307

Structural Characterization and Thermoelectric Performance of ZrNiSn Half-Heusler Compound Synthesized by Mechanical Alloying

Germond, Jeffrey 14 May 2010 (has links)
Thermoelectric (TE) ZrNiSn samples with a half-Heusler atomic structure were synthesized by mechanical alloying (MA) and consolidation by either Spark Plasma Sintering (SPS) or hot pressing (HP). X-Ray diffraction patterns of as milled powders and consolidated samples were compared and analyzed for phase purity. Thermal conductivity, electrical conductivity and Seebeck coefficient are measured as a function of temperature in the range 300 K to 800 K and compared with measurements reported for high temperature solid state reaction synthesis of this compound. HP samples, compared to SPS samples, demonstrate increased grain growth due to longer heating times. Reduced grain size achieved by MA and SPS causes increased phonon scattering due to the increased number of grain boundaries, which lowers the thermal conductivity without doping the base system with addition phonon scattering centers. Mechanical characterization of the samples by microindentation and depth sensing indentation for hardness and elastic modulus will be discussed.
308

Nanostructurization of Transition Metal Silicides for High Temperature Thermoelectric Materials

Perumal, Suresh January 2012 (has links) (PDF)
Transition Metal Silicides (TMS) are well known refractory materials because of their high thermal and structural stability at elevated temperature. In addition TMS materials are known for their moderate thermoelectric applications at high temperature since they exhibit superior semiconducting behavior. But TMS materials have relatively higher thermal conductivity which limits their applications in the field of thermoelectrics. So it is important to reduce their thermal conductivity to enhance conversion efficiency. In this regard, the work is performed to reduce the thermal conductivity of selected silicides such as CrSi2, MnSi2, and β-FeSi2 through alloys scattering and nano-structuring by mechanical alloying. A brief introduction about basic principles of thermoelectricity and related parameters are described in the chapter 1. Thermoelectric material’s figure of merit (zT) depends on the ratio of carrier charge transport and thermal energy transport. The conversion efficiency can be significantly enhanced by increasing the zT value. This chapter discusses the methods to increase the zT and list out some of the state-of-art of thermoelectric materials which possesses high zT value. Chapter 2 covers the preparation of selected silicides, such as CrSi2, MnSi2 and β-FeSi2, and the characterization techniques used to define the thermoelectric performance. In this chapter the suitability and the performance of transition metal silicides for high temperature thermoelectric application are discussed. In summary, the objective of the thesis has been framed. Chapter 3 deals with thermoelectric properties of pure and Mn, Al doped chromium disilicide (CrSi2). This chapter has been divided into three parts and discussed the effect of composition variation (CrSi1.90-2.10), point defects (by introducing Al at Si site), and mass-fluctuation scattering (by co-substitution of Mn and Al) on thermoelectric properties of polycrystalline CrSi2 in the temperature range of 300K-800K. In the first part, it is observed that CrSi2 has a homogeneity range of CrSi1.95-CrSi2.02. The secondary phases evolve above and below this homogeneity range. These secondary phases significantly scatter phonons and reduce the thermal conductivity. In the second part, Al has been introduced at Si site in CrSi2 and creates the point defects which is also scatter the short wavelength phonons and lead to low thermal conductivity. The third part explores the influence of co-substitution of Mn at Cr site and Al at Si site on lattice thermal conductivity. Here, substitution of Al creates point defects and addition of Mn leads to mass fluctuation scattering. These combined effects result in huge reduction in lattice thermal conductivity and thereby enhanced the zT. Chapter 4 deals with efforts of nano-structuring the CrSi2 through Mechanical Alloying (MA) using SS (stainless steel) and WC (Tungsten Carbide) milling media. The effects of two milling media on crystallite size reduction are discussed. It is seen that as milling time increases the rate of crystallite size reduction also increases. The X-ray diffraction studies of hot pressed pellets show the formation of secondary metallic phase like Cr1-xFexSi from SS milled samples and CrSi from WC milled samples. It indicates that CrSi2 gains metallic Fe atoms during mechanical alloying and the secondary phases are formed. As milling time increases it is observed that weight loss from the milling balls also increases. The Fe content coming from SS ball forms a solid solution with CrSi phase. The transport properties like resistivity, Seebeck coefficient and thermal conductivity were measured for milled samples from 300K-800K. It is observed that formation of the secondary metallic phase reduces resistivity and Seebeck coefficient of overall ceramics. Very large reduction in thermal conductivity was found for samples which were 15hrs-WC-milled (7.4 W/m.K at 375K) due to increased phonon scattering by grain boundaries. The 15hrs-SS-milled samples show thermal conductivity ~10 W/m.K which is considerably low as compared to the as-cast CrSi2 (13.5 W/m.K). This chapter explores the structural studies and mechano-chemical decomposition of CrSi2. In addition, the influences of mechanical milling media and micron size secondary phase on transport properties of CrSi2 are also discussed. Chapter 5 deals with the influence of microstructures of MnSi2 densified by hot uni-axial pressing (HP) and spark plasma sintering (SPS) on thermoelectric properties. The effects of these densification processes on arresting the grain growth during sintering are explored. The powder X-ray diffraction studies show higher manganese silicide (HMS) with secondary Si phase. The SEM and EPMA results confirmed the presence of Si phase. The TEM micrographs are shown the particle size distribution of HMS to be <200nm with fine precipitates of Si, of 5-10nm size, in the HMS matrix. The ball milled samples of MnSi2 showed increase in resistivity and Seebeck coefficient with large reduction in total thermal conductivity as compared to that seen in as-cast sample. The SPS densified samples show lower thermal conductivity, with reduction by about 52%, as compared to HP sample’s (45%) reduction for same conditions. An enhancement in zT by 73% could be achieved for the SPS densified for 2 min at 1060˚C. Chapter 6 examines (i) the decomposition of α–FeSi2, generally known as α-Fe2Si5, (eutectoid reaction) into β-FeSi2 with Si dispersoids (ii) formation of β-FeSi2 from ε-FeSi and α-Fe2Si5 (peritectoid reaction). This is accompanied by a discussion of the microstructural effect on thermoelectric properties. Prolonged annealing of peritectoid composition decomposes the α– FeSi2 phase, replaces the ε–FeSi phase, and forms pure β-FeSi2 whereas eutectoid composition of α–FeSi2 decomposes into lamellar structure of β-FeSi2 and Si dispersions. The aging heat treatment carried out for composition prepared from eutectoid reaction at various temperatures (600°C, 700°C, 800°C and 850°C for duration of 100hrs, 10hrs, 4hrs and 10hrs, respectively) below the equilibrium eutectoid temperature were found to have fine and homogenous dispersions of Si particles. The XRD and SEM studies confirmed the presence of a secondary Si phase on the matrix of β-FeSi2 for the heat treated eutectoid composition. The excess Si phase in β-FeSi2 increases the resistivity and Seebeck coefficient by the reducing carrier concentration of system as compared to those that of pure β-FeSi2, which is prepared from peritectoid composition. The samples heat treated at 600°C showed relatively low thermal conductivity as compared to that of β-FeSi2. This chapter gives a route map for reducing the thermal conductivity by micro structural engineering through Si dispersions on β-FeSi2. In addition, this comparison of two the decomposition processes and its influence on the microstructure and thermoelectric properties is made. Chapter 7 summarizes the key conclusions of the work performed in this thesis. The work reported in this thesis has been carried out by the candidate as a part of Ph.D training programme. He hopes that this would constitute a worthwhile contribution to the field of thermoelectrics for understanding the (i) effect of alloy scattering, (ii) mass fluctuation scattering, (iii) and nano-structuring of transition metal silicides for high temperature thermoelectric materials.
309

Termoelektrický solární generátor / Thermo-electric solar generator

Kočvárek, Ondřej January 2008 (has links)
The introduction of this work is devoted to the description of physical principals and condtruction of modern semiconductor thermoelectric transformers. This work describes thein basic characters and the most commonly used materials for thein production. Further, it mentions the basic principals and physical effects that describe the thermoelectric conversion of energy and the nondestructive method for establishing the basic material characteristics of thermoelectric transformers. The substantiv part of this work is the measuring of the material’s characteristics of the accessible thermoelectric elements through the medium of experimental measuring network. The optimal construction of thermoelectric solar generators used for individual thermoelectric elements are designed based on the taken measurements and the evaluation of material’s characteristics of the observed thermoelectric elements.
310

Využití termoelektrického generátoru pro zvýšení využití odpadního tepla / Use of a thermoelectric generator for increasing heat recovery

Laga, Ondřej January 2015 (has links)
This thesis deals with the problem of waste heat, namely, the exhaust gas which are not frequently used. Specifically, it is a design of thermoelectric generators set, power electronics for fan and heat exchanger proposal. The entire system uses the energy of the waste heat to increase the heating efficiency.

Page generated in 0.0849 seconds