• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 69
  • 35
  • 32
  • 16
  • 8
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 474
  • 103
  • 89
  • 73
  • 69
  • 61
  • 58
  • 53
  • 49
  • 45
  • 41
  • 37
  • 37
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Radar and Thermopile Sensor Fusion for Pedestrian Detection

Rouhani, Shahin January 2005 (has links)
During the last decades, great steps have been taken to decrease passenger fatality in cars. Systems such as ABS and airbags have been developed for this purpose alone. But not much effort has been put into pedestrian safety. In traffic today, pedestrians are one of the most endangered participants and in recent years, there has been an increased demand for pedestrian safety from the European Enhanced Vehicle safety Committee and the European New Car Assessment Programme has thereby developed tests where pedestrian safety is rated. With this, detection of pedestrians has arised as a part in the automotive safety research. This thesis provides some of this research available in the area and a brief introduction to some of the sensors readily available. The objective of this work is to detect pedestrians in front of a vehicle by using thermoelectric infrared sensors fused with short range radar sensors and also to minimize any missed detections or false alarms. There has already been extensive work performed with the thermoelectric infrared sensors for this sole purpose and this thesis is based on that work. Information is provided about the sensors used and an explanation of how they are set up during this work. Methods used for classifying objects are given and the assumptions made about pedestrians in this system. A basic tracking algorithm is used to track radar detected objects in order to provide the fusion system with better data. The approach chosen for the sensor fusion is a central-level fusion where the probabilities for a pedestrian from the radars and the thermoelectric infrared sensors are combined using Dempster-Shafer Theory and accumulated over time in the Occupancy Grid framework. Theories that are extensively used in this thesis are explained in detail and discussed accordingly in different chapters. Finally the experiments undertaken and the results attained from the presented system are shown. A comparison is made with the previous detection system, which only uses thermoelectric infrared sensors and of which this work continues on. Conclusions regarding what this system is capable of are drawn with its inherent strengths and weaknesses.
322

Thermoelectric Cooling Of A Pulsed Mode 1064 Nm Diode Pumped Nd:yag Laser

Yuksel, Yuksel 01 December 2010 (has links) (PDF)
Since most of the energy input is converted to thermal energy in laser applications, the proper thermal management of laser systems is an important issue. Maintaining the laser diode and crystal temperature distributions in a narrow range during the operation is the most crucial requirement for the cooling of a laser system. In the present study, thermoelectric cooling (TEC) of a 1064 nm wavelength diode pumped laser source is investigated both experimentally and numerically. During the heat removal process, the thermal resistance through and between the materials, the proper integration of the TEC assembly, and the heat sink efficiency become important. For the aim of evaluating and further improving the system performance, various assembly configurations, highly conductive components, efficient interface materials and heat sink alternatives are considered. Several experiments are conducted during the system development stage, and parallel numerical simulations are performed both for comparison and also for providing valuable input for the system design. Results of the experiments and the simulations agree well with each other. As the laser device works in the transient regime, the experiments and the simulations are also implemented in this regime. In the final part of the study, the experiments are performed under the actual device working conditions. It is proved that with the designed TEC module and the copper heat sink system, the laser device can operate longer than the required operational time successfully.
323

Structural and Electrical Transport Properties of Doped Nd-123 Superconductors

Ghorbani, Shaban Reza January 2003 (has links)
<p>It is generally believed that one of the key parameterscontrolling the normal state and superconducting properties ofhigh temperature superconductors is the charge carrierconcentration<i>p</i>in the CuO<sub>2</sub>planes.By changing the non-isovalent dopingconcentration on the RE site as well as the oxygen content in(RE)Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, an excellent tool is obtained tovary the hole concentration over a wide range from theunderdoped up to the overdoped regime.In the present thesis thefocus is on the doping effects on the structural and normalstate electrical properties in Nd-123 doped with Ca, La, Pr,Ca-Pr, and Ca-Th.T he effects of doping have been investigatedby X-ray and neutron powder diffraction, and by measurements ofthe resistivity, thermoelectric power<i>S</i>, and Hall coefficient R<sub>H</sub>.T he thermoelectric power is a powerful tool forstudies of high temperature superconductivity and is highlysensitive to details of the electronic band structure.<i>S</i>as a function of temperature has been analyzed in twodifferent two band models.The parameters of these models arerelated to charactristic features of the electron bands and asemiempirical physical description of the doping dependence of<i>S</i>is obtained.So me important results are following:</p><p>(i)<i>The valence of Pr in the RE-123 family.</i>Results from thestructural investigations, the critical temperature Tc, and thethermoelectric power indicated a valence +4 at low dopingconcentration, which is in agreement with results of chargeneutral doping in the RE-123 family.(ii)<i>Hole localization</i>. The results of bond valence sum (BVS)calculations from neutron diffraction data showed that holelocalization on the Pr<sup>+4</sup>site was the main reason for the decrease of thehole concentration p.Differ ent types of localization wereinferred by S measurements for Ca-Th and Ca-Pr dopings.(iii)<i>Competition between added charge and disorder</i>. Theresults of RH measurements indicated that Ca doping introduceddisorder in the CuO<sub>2</sub>planes in addition to added charge.This could bethe main reason for the observed small decrease of thebandwidth of the density of states in the description of aphenomenological narrow band model.(iv) Empirical parabolic relation between γ and p.S data were analyzed and well described by a two-band modelwith an additional linear T term, γT.An empiricalparabolic relation for γ as a function of holeconcentration has been found.</p><p><b>Key words:</b>high temperature superconductors, criticaltemperature, resistivity, thermoelectric power, Hallcoefficient, X-ray diffraction, Neutron diffraction, NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, hole concentration,substitution.</p>
324

Radar and Thermopile Sensor Fusion for Pedestrian Detection

Rouhani, Shahin January 2005 (has links)
<p>During the last decades, great steps have been taken to decrease passenger fatality in cars. Systems such as ABS and airbags have been developed for this purpose alone. But not much effort has been put into pedestrian safety. In traffic today, pedestrians are one of the most endangered participants and in recent years, there has been an increased demand for pedestrian safety from the European Enhanced Vehicle safety Committee and the European New Car Assessment Programme has thereby developed tests where pedestrian safety is rated. With this, detection of pedestrians has arised as a part in the automotive safety research.</p><p>This thesis provides some of this research available in the area and a brief introduction to some of the sensors readily available. The objective of this work is to detect pedestrians in front of a vehicle by using thermoelectric infrared sensors fused with short range radar sensors and also to minimize any missed detections or false alarms. There has already been extensive work performed with the thermoelectric infrared sensors for this sole purpose and this thesis is based on that work.</p><p>Information is provided about the sensors used and an explanation of how they are set up during this work. Methods used for classifying objects are given and the assumptions made about pedestrians in this system. A basic tracking algorithm is used to track radar detected objects in order to provide the fusion system with better data. The approach chosen for the sensor fusion is a central-level fusion where the probabilities for a pedestrian from the radars and the thermoelectric infrared sensors are combined using Dempster-Shafer Theory and accumulated over time in the Occupancy Grid framework. Theories that are extensively used in this thesis are explained in detail and discussed accordingly in different chapters.</p><p>Finally the experiments undertaken and the results attained from the presented system are shown. A comparison is made with the previous detection system, which only uses thermoelectric infrared sensors and of which this work continues on. Conclusions regarding what this system is capable of are drawn with its inherent strengths and weaknesses.</p>
325

Oxide Thermoelectrics: The Role of Crystal Structure on Thermopower in Strongly Correlated Spinels

Sparks, Taylor David 10 August 2012 (has links)
This dissertation reports on the synthesis, structural and thermal characterization and electrical and thermal transport properties of a variety of strongly correlated spinels. General structure property relationships for electrical and thermal transport are discussed. However, the relationship between thermopower and features of the crystal structure such as spin, crystal field, anti-site disorder, and structural distortions are explored in depth. The experimental findings are reported in the context of improving existing oxide thermoelectric materials, screening for new materials or using thermopower as a unique characterization tool to determine the cation distribution in spinels. The need for improved n-type oxide thermoelectric materials has led researchers to consider mixed valence \((+3/+4)\) manganese oxides. Contrary to previous findings we report herein that the \(LiMn_2O_4\) compound reaches the relatively large n-type thermopower of \(-73 \mu V/K\) which is three times larger than the value observed in other manganese oxides, \(-25 \mu V/K\). The cause of this increase in thermopower is shown to be the absence of a Jahn-Teller distortion on the \(Mn^{3+}\) ions in \(LiMn_2O_4\). By avoiding this structural distortion the orbital degeneracy is doubled and the Koshibae et al.’s modified Heikes formula predicts a thermopower of \(-79 \mu V/K\) in good agreement with the experiment. Altering the \(Mn^{3+/4+}\) ratio via aliovalent doping did not affect the thermopower and is a second evidence of universal charge transport first reported by Kobayashi et al. The role of anti-site disorder was further examined in \(Fe_xMn_{1-x}NiCrO_4\) x=0, ½, ¾, 1 spinels but the effect on thermopower was inconclusive due to the presence of impurity phases. Next, the thermopower as a function of temperature in \(Co_3O_4\) was investigated as a means whereby the Wu and Mason’s 30 year old model for using thermopower to calculate cation distribution in spinels could be revisited. We report evidence that Wu and Mason’s original model using the standard Heikes formula and considering octahedral sites alone leads to a stoichiometrically inconsistent result at high temperatures. Alternate models are evaluated considering Koshibae et al.’s modified Heikes formula and accounting for tetrahedral site contributions. Furthermore, the effect of a possible spin state transition is considered. / Engineering and Applied Sciences
326

Soft X-ray photoemission study of thermoelectric alloys Fe2−x−yIryV1+xAl and Fe2−xV1+x−yTiyAl

Nishino, Yoichi, Sugiura, Takahiro, Tanaka, Suguru, Tamada, Yuko, Sandaiji, Yusuke, Miyazaki, Hidetoshi, Inukai, Manabu, Yagi, Shinya, Kato, Masahiko, Harada, Shota, Soda, Kazuo 04 1900 (has links)
Advances in Vacuum Ultraviolet and X-ray Physics The 37th International Conference on Vacuum Ultraviolet and X-ray Physics (VUVX2010)
327

Thermoelectric Effects In Mesoscopic Physics

Cipiloglu, Mustafa Ali 01 January 2004 (has links) (PDF)
The electrical and thermal conductance and the Seebeck coefficient are calculated for one-dimensional systems, and their behavior as a function of temperature and chemical potential is investigated. It is shown that the conductances are proportional to an average of the transmission probability around the Fermi level with the average taken for the thermal conductance being over a wider range. This has the effect of creating less well-defined plateaus for thermal-conductance quantization experiments. For weak non-linearities, the charge and entropy currents across a quantum point contact are expanded as a series in powers of the applied bias voltage and the temperature difference. After that, the expansions of the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. Also, it is shown that the linear thermal conductance of a quantum point contact displays a half-plateau structure, almost flat regions appearing around half-integer multiples of the conductance quantum. This structure is investigated for the saddle-potential model.
328

Soft x-ray photoemission study of the Heusler-type Fe_2VAl_1-zGe_z alloys

MIYAZAKI, Hidetoshi, SODA, Kazuo, KATO, Masahiko, YAGI, Shinya January 2007 (has links)
No description available.
329

Prot?tipo de um microgerador termoel?trico de estado s?lido: cogera??o a g?s

Farias, Sandro Ricardo Alves 31 July 2009 (has links)
Made available in DSpace on 2014-12-17T14:08:35Z (GMT). No. of bitstreams: 1 SandroRAFpdf.pdf: 3399052 bytes, checksum: df66802bf0108d40809857894310d319 (MD5) Previous issue date: 2009-07-31 / The thermoelectric energy conversion can be performed directly on generators without moving parts, using the principle of SEEBECK effect, obtained in junctions of drivers' thermocouples and most recently in semiconductor junctions type p-n which have increased efficiency of conversion. When termogenerators are exposed to the temperature difference (thermal gradient) eletromotriz a force is generated inducing the appearance of an electric current in the circuit. Thus, it is possible to convert the heat of combustion of a gas through a burner in power, being a thermoelectric generator. The development of infrared burners, using porous ceramic plate, is possible to improve the efficiency of heating, and reduce harmful emissions such as CO, CO2, NOx, etc.. In recent years the meliorate of thermoelectric modules semiconductor (TEG's) has stimulated the development of devices generating and recovery of thermal irreversibility of thermal machines and processes, improving energy efficiency and exergy these systems, especially processes that enable the cogeneration of energy. This work is based on the construction and evaluation of a prototype in a pilot scale, for energy generation to specific applications. The unit uses a fuel gas (LPG) as a primary energy source. The prototype consists of a porous plate burner infrared, an adapter to the module generator, a set of semiconductor modules purchased from Hi-Z Inc. and a heat exchanger to be used as cold source. The prototype was mounted on a test bench, using a system of acquisition of temperature, a system of application of load and instrumentation to assess its functioning and performance. The prototype had an efficiency of chemical conversion of 0.31% for electrical and heat recovery for cogeneration of about 33.2%, resulting in an overall efficiency of 33.51%. The efficiency of energy exergy next shows that the use of primary energy to useful fuel was satisfactory, although the proposed mechanism has also has a low performance due to underuse of the area heated by the small number of modules, as well as a thermal gradient below the ideal informed by the manufacturer, and other factors. The test methodology adopted proved to be suitable for evaluating the prototype / A convers?o termoel?trica da energia pode ser realizada diretamente em geradores sem partes m?veis, que utilizam o princ?pio do efeito SEEBECK, obtido em jun??es de condutores termopares e mais recentemente nas jun??es semicondutoras tipo p-n que apresentam maior efici?ncia de convers?o. Quando os termogeradores s?o expostos a uma diferen?a de temperatura (gradiente t?rmico), uma for?a eletromotriz ? gerada induzindo o surgimento de uma corrente el?trica no circuito. Desta forma, ? poss?vel converter em energia t?rmica a energia t?rmica da combust?o de um g?s atrav?s de um queimador, constituindo-se em um Gerador Termoel?trico. O desenvolvimento de queimadores infravermelhos, utilizando placa cer?mica porosa, tem possibilitado melhorar a efici?ncia dos processos de aquecimento, al?m de reduzir as emiss?es nocivas como CO, NOx, etc. Nos ?ltimos anos, o aperfei?oamento de m?dulos semicondutivos termoel?tricos (TEG?s) tem estimulado o desenvolvimento de dispositivos geradores e de aproveitamento de irreversibilidades t?rmicas de m?quinas t?rmicas e processos, melhorando a efici?ncia energ?tica e exerg?tica desses sistemas, principalmente de processos que permitem a cogera??o de energia. O presente trabalho est? baseado na constru??o e avalia??o de um prot?tipo, em escala piloto, para gera??o de energia visando aplica??es espec?ficas. A unidade utiliza g?s combust?vel (GLP) como fonte prim?ria de energia. O prot?tipo ? composto de um queimador infravermelho de placas porosas, um adaptador para o m?dulo gerador, um conjunto de m?dulos semicondutores adquiridos da Hi-Z Inc. e um trocador de calor para ser utilizado como fonte fria. O prot?tipo foi montado em uma bancada de testes, utilizando um sistema de aquisi??o de temperatura, um sistema de aplica??o de carga e instrumenta??o para avaliar o seu funcionamento e desempenho. O prot?tipo apresentou uma efici?ncia de convers?o qu?mica para el?trica de 0,31% e aproveitamento t?rmico de cogera??o da ordem de 33,2%, resultando numa efici?ncia global de 33,51%. A efici?ncia exerg?tica pr?xima da energ?tica mostra que o aproveitamento ?til da energia prim?ria do combust?vel foi satisfat?rio, embora o dispositivo proposto tenha apresentado, ainda, um baixo desempenho devido a subutiliza??o da ?rea aquecida pelo n?mero reduzido de m?dulos, como tamb?m, um gradiente t?rmico abaixo do ideal informado pelo fabricante, al?m de outros fatores. A metodologia de ensaio adotada mostrou-se adequada para avalia??o do prot?tipo
330

Matériaux thermoélectriques du type Mg2Si-Mg2Sn élaborés en couches minces par co-pulvérisation assistée par plasma / Thermoelectric material Mg2Si-Mg2Sn elaborated in thin films by plasma assisted co-sputtering

Le Quoc, Huy 21 December 2011 (has links)
Cette thèse présente une étude de l'élaboration et des propriétés structurales, ainsi que des propriétés électriques, des couches minces de matériaux thermoélectriques de type Mg2Si-Mg2Sn. Les couches minces polycristallines du composé Mg2Sn et des solutions solides Mg2Si1-xSnx ont été réalisées sur plusieurs types de substrat, à température ambiante, par la technique de dépôt par co-pulvérisation assistée par plasma micro-onde multi-dipolaire. L'influence des paramètres de dépôt sur les propriétés structurales et électriques des couches élaborées a été étudiée. Ainsi, la composition chimique des couches a été parfaitement contrôlée par le biais de la polarisation indépendante des cibles des éléments constituants. La composition de phase, ainsi que la microstructure des couches, ont été trouvées dépendant de la pression de dépôt, de la distance entre des cibles et le substrat, de la puissance micro-onde et de la configuration du réacteur de dépôt. Ces propriétés structurales, à leur tour, ont un fort impact sur les propriétés électriques des couches déposées. Les couches minces Mg2Sn dopé en Ag, déposées avec la condition de dépôt optimale, ont présenté un facteur de puissance à température ambiante comparable à celui des matériaux actuellement utilisés. Les couches minces des solutions solides Mg2Si1-xSnx présentent, pourtant, des facteurs de puissance encore modestes résultant notamment des faibles conductivités électriques. / This thesis presents a study of the deposition and structural as well as electrical properties of thin films of thermoelectric materials Mg2Sn-Mg2Si. Polycrystalline thin films of the Mg2Sn compound and solid solutions Mg2Si1-xSnx were deposited on several types of substrate at room temperature, by co-sputtering assisted by microwave plasma. The influence of deposition parameters on structural and electrical properties of deposited films was studied. Thus, the chemical composition of layers was fully controlled by the means of the independent polarization of target of constituent elements. Phase composition and microstructure of deposited films were found depending on the deposition pressure, on the distance between targets and the substrate, on the microwave power, as well as on the configuration of the deposition reactor. These structural properties, in turn, have a strong impact on the electrical properties of the deposited films. Mg2Sn thin films doped with Ag, deposited under optimal condition, presented a power factor at room temperature comparable to conventional thermoelectric materials. Thin films of solid solutions Mg2Si1-xSnx present, however, power factors still modest due in particular to low electrical conductivities.

Page generated in 0.073 seconds