Spelling suggestions: "subject:"thermozyklische"" "subject:"thermozyklischer""
1 |
Untersuchung der Gassensitivität modifizierter SnO2-SchichtenFrank, Kevin 29 January 2010 (has links) (PDF)
Halbleiter-Gassensoren auf der Basis von Zinnoxid spielen in der Überwachung, Steuerung und Regelung von Prozessen sowie bei der Kontrolle von Umweltparametern eine wachsende Rolle. Dies liegt daran, dass sie kostengünstig und hoch sensitiv für diverse Gase sind. Der mögliche Anwendungsbereich wird jedoch durch ihre geringe Selektivität eingeschränkt. Daher stellt die Steigerung der Sensitivitäten von SnO2-Sensoren eine bleibende Forderung an die Forschung und Entwicklung dar. In der Literatur werden verschiedene Methoden zur Beeinflussung von Sensitivität und Selektivität beschrieben. Am weitesten verbreitet sind insbesondere die Modifizierung der Betriebsweise und die Veränderung der Zusammensetzung der Zinnoxidschichten. Diese beiden Wege wurden auch in dieser Arbeit beschritten. Zum einen wurde der thermozyklische Betrieb, der gegenüber dem isothermen bereits zu einer Verbesserung der Selektivität geführt hat, systematisch untersucht. Dies erlaubt die Leistungsfähigkeit des thermozyklischen Verfahrens zu optimieren und noch ungeklärte Phänomene des Detektionsprozesses besser zu beschreiben. Zum anderen waren Modifizierungen der Zinnoxidschicht durch Zusatz fester Ionenleiter Gegenstand detaillierter Untersuchungen. Zusätze von Materialien dieses Typs führen ebenso wie Änderungen im Betriebsmodus zu Selektivitätssteigerungen, insbesondere gegenüber Gasen mit bestimmten funktionellen Gruppen, z.B. primären Alkoholen.
Folgende Erkenntnisse wurden in dieser Arbeit erlangt:
· Thermozyklischer Betrieb
Der thermozyklische Betrieb führt zu charakteristischen Leitwert-Zeit-Profilen (LZP). Die Form der LZP (Profilstruktur) ist vom Betriebsregime wie der Aufheiz- und Abkühlungsgeschwindigkeit (Temperaturrate), dem Volumenstrom des Messgases, der Schichtdicke der sensitiven Schicht, dem Elektrodenmaterial und vor allem aber von der Art und Konzentration der Gaskomponente sowie dem Feuchtegehalt des Messgases abhängig. Der Temperaturrate kommt hierbei eine besondere Bedeutung zu. Sie beeinflusst die gasspezifischen nicht-stationären Nichtgleichgewichte an der Sensoroberfläche und somit die LZP sowie die Sensitivitäten.
Die Sensitivität kann aus den Sensorsignalen (LZP) als Summenparameter für Temperaturzyklen bestimmt werden. Sie lässt sich als mittlere relative Leitwertänderung bei Gasexposition definieren. Ebenso repräsentativ für die gassensitiven Eigenschaften sind Vorfaktor und Exponent (Sensitivitätskoeffizienten A´ und b´) der aus der Konzentrationsabhängigkeit der Leitwertssumme bestimmbaren Potenzfunktion. Da sich jedoch bereits kleinste Mengen an Reaktanten auf das in Luft bestimmte Leitwert-Zeit-Profil signifikant auswirken und daher diese Profile streuen, ist die Darstellung der Parameter der Potenzfunktion und die Bestimmung der Sensitivität als relative Leitwertänderung in Bezug auf eine definierte geringe Gaskonzentration generell zu bevorzugen.
Es wurde exemplarisch gezeigt, dass die unter thermozyklischen Bedingungen ermittelten Sensitivitäten gegenüber CO, Propylen sowie Propanol größer sind als die unter isothermen Betriebsbedingungen bestimmten.
Der Zusammenhang von Sensitivität und Schichtdicke ist für verschiedene Gase unterschiedlich ausgeprägt. Profilform und Schichtdicken sind nur selten korrelierbar. Abhängigkeiten der spezifischen Größen der LZP-Maxima (Temperatur, Leitwert) von der Schichtdicke wurden nur für Propylen gefunden.
Durch die gezielte Variation von Parametern lassen sich indirekt Schlüsse über die Wechselwirkungen und Mechanismen in porösen gassensitiven Schichten ziehen. Dominierende Effekte von Ad- und Desorption bzw. der Reaktion sowie der Diffusion von Gaskomponenten können in Bezug zueinander gesetzt werden.
· Gassensitive Eigenschaften von SnO2/NASICON-artigen Kompositen
Komposite aus SnO2 und NASICON, bei denen das Na+ im NASICON gegen Li+ oder K+ ausgetauscht wurde, haben eine ähnliche Wirkung auf Sensitivität und Selektivität wie die mit Na+. Die Ergebnisse erweitern die in der Literatur beschriebenen Kenntnisse zur Wirkung ionisch leitender Kompositzusätze. Die Einflüsse der Zusätze sind sowohl durch die LZP als auch durch die daraus berechneten Sensitivitäten bzw. Sensitivitätskoeffizienten A´ und b´ darstellbar. Starke Sensitivitätssteigerungen gegenüber primären Alkoholen wurden für steigende Anteile der Alkaliionen in den Kompositen festgestellt. Dagegen ist die Sensitivität gegenüber sekundären Alkoholen bei Kompositschichten im Vergleich zu reinen SnO2-Schichten kaum verändert. Die für 1- und 2-Propanol im thermozyklischen Betrieb gefundenen Sensitivitäten sind in der Tendenz mit denen unter isothermen Betriebsbedingungen erlangten vergleichbar.
· Einfluss der Elektroden
Es wurden Hinweise darauf gefunden, dass bereits in der Literatur diskutierte Einflüsse der Elektroden auf die gassensitiven Eigenschaften im isothermen Betrieb von SnO2-Schichten auch im thermozyklischen Betrieb auftreten. Weiterhin beeinflusst die Art des Elektrodenmaterials, z.B. Gold und Platin sowie das Ausgangsmaterials zur Elektrodenherstellung spezifisch die Sensorsignale im thermozyklischen Betriebsverfahren. Die Einflüsse der Elektroden sind nicht nur gasspezifisch, sondern bewirken auch Unterschiede je nach verwendeter gassensitiver Schicht. Dabei können LZP, abhängig vom Gas, maßgeblich von der Elektrode oder den Schichtzusätzen beeinflusst sein.
· Diffuse Reflexion Infrarot Fourier-Transformations Spektroskopie (DRIFTS)
Isotherme Messungen der Diffusen Reflexion Infrarot Fourier-Transformations Spektroskopie (DRIFTS) in Abhängigkeit der Zusammensetzung der Gasphase und des gassensitiven Schichtmaterials sind geeignet, um adsorbierte Oberflächenspezies zu detektieren und Vorstellungen bezüglich der Oberflächenprozesse zu erlangen. DRIFTS-Untersuchungen in Luft mit verschiedenen Konzentrationen weisen auf eine höhere Reaktivität des 1-Propanol mit adsorbierten HO-Gruppen verglichen mit der des 2-Propanol hin. Die Ergebnisse deuten zudem an, dass sich die Oberflächenprozesse an SnO2/NASICON(x=3)-Kompositen von denen der reinen SnO2-Schicht unterscheiden, auch wenn sich diese jeweils unabhängig von der Art des Alkohols zeigen.
|
2 |
Untersuchung der Gassensitivität modifizierter SnO2-SchichtenFrank, Kevin 17 December 2009 (has links)
Halbleiter-Gassensoren auf der Basis von Zinnoxid spielen in der Überwachung, Steuerung und Regelung von Prozessen sowie bei der Kontrolle von Umweltparametern eine wachsende Rolle. Dies liegt daran, dass sie kostengünstig und hoch sensitiv für diverse Gase sind. Der mögliche Anwendungsbereich wird jedoch durch ihre geringe Selektivität eingeschränkt. Daher stellt die Steigerung der Sensitivitäten von SnO2-Sensoren eine bleibende Forderung an die Forschung und Entwicklung dar. In der Literatur werden verschiedene Methoden zur Beeinflussung von Sensitivität und Selektivität beschrieben. Am weitesten verbreitet sind insbesondere die Modifizierung der Betriebsweise und die Veränderung der Zusammensetzung der Zinnoxidschichten. Diese beiden Wege wurden auch in dieser Arbeit beschritten. Zum einen wurde der thermozyklische Betrieb, der gegenüber dem isothermen bereits zu einer Verbesserung der Selektivität geführt hat, systematisch untersucht. Dies erlaubt die Leistungsfähigkeit des thermozyklischen Verfahrens zu optimieren und noch ungeklärte Phänomene des Detektionsprozesses besser zu beschreiben. Zum anderen waren Modifizierungen der Zinnoxidschicht durch Zusatz fester Ionenleiter Gegenstand detaillierter Untersuchungen. Zusätze von Materialien dieses Typs führen ebenso wie Änderungen im Betriebsmodus zu Selektivitätssteigerungen, insbesondere gegenüber Gasen mit bestimmten funktionellen Gruppen, z.B. primären Alkoholen.
Folgende Erkenntnisse wurden in dieser Arbeit erlangt:
· Thermozyklischer Betrieb
Der thermozyklische Betrieb führt zu charakteristischen Leitwert-Zeit-Profilen (LZP). Die Form der LZP (Profilstruktur) ist vom Betriebsregime wie der Aufheiz- und Abkühlungsgeschwindigkeit (Temperaturrate), dem Volumenstrom des Messgases, der Schichtdicke der sensitiven Schicht, dem Elektrodenmaterial und vor allem aber von der Art und Konzentration der Gaskomponente sowie dem Feuchtegehalt des Messgases abhängig. Der Temperaturrate kommt hierbei eine besondere Bedeutung zu. Sie beeinflusst die gasspezifischen nicht-stationären Nichtgleichgewichte an der Sensoroberfläche und somit die LZP sowie die Sensitivitäten.
Die Sensitivität kann aus den Sensorsignalen (LZP) als Summenparameter für Temperaturzyklen bestimmt werden. Sie lässt sich als mittlere relative Leitwertänderung bei Gasexposition definieren. Ebenso repräsentativ für die gassensitiven Eigenschaften sind Vorfaktor und Exponent (Sensitivitätskoeffizienten A´ und b´) der aus der Konzentrationsabhängigkeit der Leitwertssumme bestimmbaren Potenzfunktion. Da sich jedoch bereits kleinste Mengen an Reaktanten auf das in Luft bestimmte Leitwert-Zeit-Profil signifikant auswirken und daher diese Profile streuen, ist die Darstellung der Parameter der Potenzfunktion und die Bestimmung der Sensitivität als relative Leitwertänderung in Bezug auf eine definierte geringe Gaskonzentration generell zu bevorzugen.
Es wurde exemplarisch gezeigt, dass die unter thermozyklischen Bedingungen ermittelten Sensitivitäten gegenüber CO, Propylen sowie Propanol größer sind als die unter isothermen Betriebsbedingungen bestimmten.
Der Zusammenhang von Sensitivität und Schichtdicke ist für verschiedene Gase unterschiedlich ausgeprägt. Profilform und Schichtdicken sind nur selten korrelierbar. Abhängigkeiten der spezifischen Größen der LZP-Maxima (Temperatur, Leitwert) von der Schichtdicke wurden nur für Propylen gefunden.
Durch die gezielte Variation von Parametern lassen sich indirekt Schlüsse über die Wechselwirkungen und Mechanismen in porösen gassensitiven Schichten ziehen. Dominierende Effekte von Ad- und Desorption bzw. der Reaktion sowie der Diffusion von Gaskomponenten können in Bezug zueinander gesetzt werden.
· Gassensitive Eigenschaften von SnO2/NASICON-artigen Kompositen
Komposite aus SnO2 und NASICON, bei denen das Na+ im NASICON gegen Li+ oder K+ ausgetauscht wurde, haben eine ähnliche Wirkung auf Sensitivität und Selektivität wie die mit Na+. Die Ergebnisse erweitern die in der Literatur beschriebenen Kenntnisse zur Wirkung ionisch leitender Kompositzusätze. Die Einflüsse der Zusätze sind sowohl durch die LZP als auch durch die daraus berechneten Sensitivitäten bzw. Sensitivitätskoeffizienten A´ und b´ darstellbar. Starke Sensitivitätssteigerungen gegenüber primären Alkoholen wurden für steigende Anteile der Alkaliionen in den Kompositen festgestellt. Dagegen ist die Sensitivität gegenüber sekundären Alkoholen bei Kompositschichten im Vergleich zu reinen SnO2-Schichten kaum verändert. Die für 1- und 2-Propanol im thermozyklischen Betrieb gefundenen Sensitivitäten sind in der Tendenz mit denen unter isothermen Betriebsbedingungen erlangten vergleichbar.
· Einfluss der Elektroden
Es wurden Hinweise darauf gefunden, dass bereits in der Literatur diskutierte Einflüsse der Elektroden auf die gassensitiven Eigenschaften im isothermen Betrieb von SnO2-Schichten auch im thermozyklischen Betrieb auftreten. Weiterhin beeinflusst die Art des Elektrodenmaterials, z.B. Gold und Platin sowie das Ausgangsmaterials zur Elektrodenherstellung spezifisch die Sensorsignale im thermozyklischen Betriebsverfahren. Die Einflüsse der Elektroden sind nicht nur gasspezifisch, sondern bewirken auch Unterschiede je nach verwendeter gassensitiver Schicht. Dabei können LZP, abhängig vom Gas, maßgeblich von der Elektrode oder den Schichtzusätzen beeinflusst sein.
· Diffuse Reflexion Infrarot Fourier-Transformations Spektroskopie (DRIFTS)
Isotherme Messungen der Diffusen Reflexion Infrarot Fourier-Transformations Spektroskopie (DRIFTS) in Abhängigkeit der Zusammensetzung der Gasphase und des gassensitiven Schichtmaterials sind geeignet, um adsorbierte Oberflächenspezies zu detektieren und Vorstellungen bezüglich der Oberflächenprozesse zu erlangen. DRIFTS-Untersuchungen in Luft mit verschiedenen Konzentrationen weisen auf eine höhere Reaktivität des 1-Propanol mit adsorbierten HO-Gruppen verglichen mit der des 2-Propanol hin. Die Ergebnisse deuten zudem an, dass sich die Oberflächenprozesse an SnO2/NASICON(x=3)-Kompositen von denen der reinen SnO2-Schicht unterscheiden, auch wenn sich diese jeweils unabhängig von der Art des Alkohols zeigen.
|
Page generated in 0.0388 seconds