• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator

Pham, Thanh Tuong 05 1900 (has links)
This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the pressure sensor is performed to analyze the stress- strain of the sensor's mechanical structure. A 3D printing prototype of the sensor is fabricated and the proposed sensing principle is verified using a force-frequency analysis apparatus. Next to the 3D printing model verification, the pressure sensor with stainless steel housing has been fabricated with inbuilt crystal oscillator circuit. The oscillator circuit is used to excite the piezo crystal resonator at its fundamental vibrational mode and give the frequency as an output signal. Based on the FEA and experimental results, it has been concluded that the maximum pressure that the sensor can measure is 45 (psi). The pressure test results performed on the stainless steel product shows a highly linear relationship between the input (pressure) and the output (frequency).
2

Theoretical and experimental development of a ZnO-based laterally excited thickness shear mode acoustic wave immunosensor for cancer biomarker detection

Corso, Christopher David 23 June 2008 (has links)
The object of this thesis research was to develop and characterize a new type of acoustic biosensor - a ZnO-based laterally excited thickness shear mode (TSM) resonator in a solidly mounted configuration. The first specific aim of the research was to develop the theoretical underpinnings of the acoustic wave propagation in ZnO. Theoretical calculations were carried out by solving the piezoelectrically stiffened Christoffel equation to elucidate the acoustic modes that are excited through lateral excitation of a ZnO stack. A finite element model was developed to confirm the calculations and investigate the electric field orientation and density for various electrode configurations. A proof of concept study was also carried out using a Quartz Crystal Microbalance device to investigate the application of thickness shear mode resonators to cancer biomarker detection in complex media. The results helped to provide a firm foundation for the design of new gravimetric sensors with enhanced capabilities. The second specific aim was to design and fabricate arrays of multiple laterally excited TSM devices and fully characterize their electrical properties. The solidly mounted resonator configuration was developed for the ZnO-based devices through theoretical calculations and experimentation. A functional mirror comprised of W and SiO2 was implemented in development of the TSM resonators. The devices were fabricated and tested for values of interest such as Q, and electromechanical coupling (K2) as well as their ability to operate in liquids. The third specific aim was to investigate the optimal surface chemistry scheme for linking the antibody layer to the ZnO device surface. Crosslinking schemes involving organosilane molecules and a phosphonic acid were compared for immobilizing antibodies to the surface of the ZnO. Results indicate that the thiol-terminated organosilane provides high antibody surface coverage and uniformity and is an excellent candidate for planar ZnO functionalization. The fourth and final specific aim was to investigate the sensitivity of the acoustic immunosensors to potential diagnostic biomarkers. Initial tests were performed in buffer spiked with varying concentrations of the purified target antigen to develop a dose-response curve for the detection of mesothelin-rFc. Subsequent tests were carried out in prostate cancer cell line conditioned medium for the detection of PSA. The results of the experiments establish the operation of the devices in complex media, and indicate that the acoustic sensors are sensitive enough for the detection of biomolecular targets at clinically relevant concentrations.
3

Développement d'un capteur magnéto acoustique on-chip pour la caractérisation des matériaux complexes / Magneto-acoustic on-chip sensor design for the characterization of complex materials

Wang, Yu 13 October 2014 (has links)
Les ondes acoustiques et électromagnétiques offrent des méthodes de caractérisation des matériaux très peu invasives. Souvent utilisées à l'aide de capteurs indépendants, l'approche développée ici est de proposer un résonateur multimodal acoustique et électromagnétique. Afin de répondre à une grande variété d'applications, le choix de l'élément actif piézo-électrique s'est porté sur un disque de quartz de coupe AT. L'étude s'articule autour des étapes aboutissant in fine à un capteur magnéto acoustique on-chip à excitation sans contact.L'étude théorique d'un capteur magnéto-acoustique à excitation inductive est tout d'abord réalisée pour un capteur chargé par un fluide visqueux. Ce capteur est constitué de trois éléments : une sonde radiofréquence (RF), un résonateur RF à fort facteur de qualité et le quartz sur lequel ont été déposées deux électrodes en anneau. Cette étude montre comment déduire la viscosité complexe du matériau étudié à partir de l'impédance électrique du système complet. Les mesures effectuées sur des mélanges étalons montrent une très bonne correspondance avec les résultats théoriques.L'intégration du résonateur RF sur l'élément piézo-électrique s'effectuant via des électrodes circulaires, une étude préliminaire est menée sur les ondes acoustiques pouvant être générées sur le quartz et leur interaction avec les électrodes. Les mesures de vibration par vibrométrie laser montrent que des ondes de Lamb sont générées dans une large gamme de fréquence (de 100 kHz à 20 MHz). L'analyse de la réponse impulsionnelle spatiale par transformée de Gabor 3D localise la source de ces ondes sur le bord des électrodes. Par ailleurs, l'étude du disque au fondamental montre une grande non-linéarité mécanique du quartz.Le modèle de résonateur RF plan multi-tour puis son intégration sur le disque de quartz du capteur magnéto-acoustique on-chip sont ensuite étudiés. Les résultats expérimentaux par mesure d'impédance et vibrométrie laser valident le modèle. La gamme de fréquence sélectionnée (entre 5 et 20 MHz) permet d'envisager des mesures micro-rhéologiques. / Acoustic and electromagnetic waves are key probing candidates for characterizing their propagation media with minimum perturbation. Often used with independent sensors based on specialized transducing materials, the approach developed here provides an on-ship multimodal sensor using the same sensing material for probing the acoustic and electromagnetic properties of the material. To meet a wide range of applications, the choice of the active piezoelectric element is carried out on an AT cut quartz. The study focuses on the steps leading in fine to an on-chip magneto-acoustic sensor with a contactless excitation.The theoretical study of a magneto-acoustic sensor inductively excited and loaded by a viscous fluid is first carried out. This sensor consists of three elements: a radio frequency (RF) sensor, a high quality factor RF resonator and a quartz on which two ring electrodes have been deposited. The complex viscosity of the studied material is derived from the electrical impedance of the complete system. The measurements carried on etalon viscoelastic materials show a good agreement with the theoretical results.The integration of the RF resonator on the piezoelectric element being via circular electrodes, a preliminary study is performed for determining the acoustic waves that can be generated in the quartz and their interaction with the electrodes. The laser vibrometry measurements indicate that Lamb waves are generated in a wide frequency range, from 100 kHz to 20 MHz. The analysis of the spatial pulse response of the sensor surface by 3D Gabor transform locates the source of these waves on the edge of the electrodes. Furthermore, the study of the disk at it fundamental frequency points out the high nonlinear mechanical behavior of the quartz.The plane RF multi-turn resonator and its integration on the quartz disk of the magneto-acoustic on-chip sensor are then studied. The experimental results of impedance and laser vibrometry measurements validate the proposed theoretical model. The selected frequency range (between 5 and 20 MHz) allows one to consider micro rheological measurements.
4

Label-free, Direct Detection of Cocaine using an Aptamer in Conjunction with an Ultra-high Frequency Acoustic Wave Sensor

Bokhari, Syed Sumra 11 August 2011 (has links)
This study embarks on exploiting the Thickness Shear Mode (TSM) acoustic wave sensor and the ElectroMagnetic Piezoelectric Acoustic Sensor (EMPAS) towards the study of aptamer-to-cocaine binding in a label-free direct approach. The high sensitivity and selectivity offered by the EMPAS in combination with alkyltrichlorosilane-based self-assembled monolayers proved superior towards the detection of cocaine. The most efficient method for the attachment of the aptamers onto the sensor surface to construct highly dense populations of the aptamer molecules with retained biomolecule activity is shown to be dependent on the composition of immobilizing solution and on the amount of spacing provided in the plane of the aptamer molecules. The distinct ligand-induced binding mechanisms and regeneration capabilities of the two anti-cocaine aptamers are monitored with the EMPAS. Utilizing this sensor to monitor cocaine-aptamer interactions will serve as the first piezoelectric aptasensor for the detection of a small molecule.
5

Label-free, Direct Detection of Cocaine using an Aptamer in Conjunction with an Ultra-high Frequency Acoustic Wave Sensor

Bokhari, Syed Sumra 11 August 2011 (has links)
This study embarks on exploiting the Thickness Shear Mode (TSM) acoustic wave sensor and the ElectroMagnetic Piezoelectric Acoustic Sensor (EMPAS) towards the study of aptamer-to-cocaine binding in a label-free direct approach. The high sensitivity and selectivity offered by the EMPAS in combination with alkyltrichlorosilane-based self-assembled monolayers proved superior towards the detection of cocaine. The most efficient method for the attachment of the aptamers onto the sensor surface to construct highly dense populations of the aptamer molecules with retained biomolecule activity is shown to be dependent on the composition of immobilizing solution and on the amount of spacing provided in the plane of the aptamer molecules. The distinct ligand-induced binding mechanisms and regeneration capabilities of the two anti-cocaine aptamers are monitored with the EMPAS. Utilizing this sensor to monitor cocaine-aptamer interactions will serve as the first piezoelectric aptasensor for the detection of a small molecule.

Page generated in 0.0983 seconds