• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2813
  • 667
  • 451
  • 412
  • 173
  • 116
  • 88
  • 69
  • 66
  • 23
  • 19
  • 19
  • 19
  • 19
  • 19
  • Tagged with
  • 5949
  • 3462
  • 1764
  • 663
  • 546
  • 521
  • 520
  • 506
  • 471
  • 383
  • 381
  • 375
  • 374
  • 351
  • 344
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1221

Magnetic and Transport Properties of Oxide Thin Films

Hong, Yuanjia 15 December 2007 (has links)
My dissertation research focuses on the investigation of the transport and magnetic properties of transition metal and rare earth doped oxides, particularly SnO2 and HfO2 thin films. Cr- and Fe-doped SnO2 films were deposited on Al2O3 substrates by pulsed-laser deposition. Xray- diffraction patterns (XRD) show that the films have rutile structure and grow epitaxially along the (101) plane. The diffraction peaks of Cr-doped samples exhibit a systematic shift toward higher angles with increasing Cr concentration. This indicates that Cr dissolves in SnO2. On the other hand, there is no obvious shift of the diffraction peaks of the Fe-doped samples. The magnetization curves indicate that the Cr-doped SnO2 films are paramagnetic at 300 and 5 K. The Fe-doped SnO2 samples exhibit ferromagnetic behaviour at 300 and 5 K. Zero-field-cooled and field-cooled curves indicate super paramagnetic behavior above the blocking temperature of 100 K, suggesting that it is possible that there are ferromagnetic particles in the Fe-doped films. It was found that a Sn0.98Cr0.02O2 film became ferromagnetic at room temperature after annealing in H2. We have calculated the activation energy and found it decreasing with the annealing, which is explained by the increased oxygen vacancies/defects due to the H2 treatment of the films. The ferromagnetism may be associated with the presence of oxygen vacancies although AMR was not observed in the samples. Pure HfO2 and Gd-doped HfO2 thin films have been grown on different single crystal substrates by pulsed laser deposition. XRD patterns show that the pure HfO2 thin films are of single monoclinic phase. Gd-doped HfO2 films have the same XRD patterns except that their diffraction peaks have a shift toward lower angles, which indicates that Gd dissolves in HfO2. Transmission electron microscopy images show a columnar growth of the films. Very weak ferromagnetism is observed in pure and Gd-doped HfO2 films on different substrates at 300 and 5 K, which is attributed to either impure target materials or signals from the substrates. The magnetic properties do not change significantly with post deposition annealing of the HfO2 films.
1222

A comparison of design techniques for gradient-index thin film optical filters

08 August 2012 (has links)
M.Ing. / This work comprises the implementation and comparison of five design techniques for the design of gradient-index thin film optical filters: classical rugate, inverse Fourier transform, a wavelet-based design procedure, as well as the flip-flop and the genetic optimization techniques. Designs for a high-reflectance filter, a beamsplitter, a discrete level filter, a distributed filter, and an anti-reflection coating were used to compare the various filter synthesis techniques. The optical thickness of the various examples was maintained below 30 and the refractive index excursion limits were between 1.5 and 3.2. The overall performance of a specific design was evaluated by a weighted merit function. The classical rugate filter uses a sinusoidal refractive index modulation that produces a single reflection band. More complex filters are realized by linear superposition of these elementary profiles. Sidelobe and ripple suppression are obtained by applying quintic windowing functions to the refractive index profile and adding matching layers at the edges of the filter. This filter design procedure has the best figure of merit of 3.73 for the discrete level filter, and the second best of 3.09 for the high-reflectance filter. The inverse Fourier transform links the refractive index profile and reflection spectrum of an optical filter by an approximate relation. It is self-correcting and iterative in nature. It produces filters with the highest optical density. The procedure excels in the design of the distributed filter with a figure of merit of 4.17. Mortlett's wavelet is used as the basis of the wavelet design technique. A single wavelet yields a single reflection band, similar to the classical rugate filter. Sidelobe suppression is an inherent property of the method, but matching layers are needed for passband ripple suppression. The optical density of the high reflection filter is larger for a filter designed with this method than for the equivalent classical rugate filter. The figure of merit of 1.75 for the high-reflectance filter is the best for any of the designs. Flip-flop refinement is a brute force approach to filter design. The layers of a starting design are flipped between two values of refractive index, the change in figure of merit evaluated and the best case saved. This process is repeated for a fixed number of iterations. It is computationally intensive and lacks ripple suppression characteristics. The flip-flop method does not compare well with any of the other techniques. It yields filters with the worst figures of merit for most of the design examples. However, it was applied successfully to the anti-reflection coating. The peak ripple for the anti-reflection filter in the 400 nm to 1100 nm wavelength band is 9.62 % compared to the inverse Fourier transform's 57.30 %. The genetic algorithm operates on the principle of "survival of the fittest". It is a stochastic procedure and yields quasi-random refractive index profiles. It excels with the antireflection coating. The peak ripple in the passband of the anti-reflection coating is 3.29%. The figure of merit for the anti-reflection coating designed with the genetic algorithm is 2.09.
1223

Study of indium tin oxide (ITO) thin films prepared by pulsed DC facing-target Sputtering (FTS). / 採用脈衝直流電源對靶濺射技術製備銦錫氧化物薄膜的硏究 / Study of indium tin oxide (ITO) thin films prepared by pulsed DC facing-target sputtering (FTS). / Cai yong mai chong zhi liu dian yuan dui ba jian she ji shu zhi bei yin xi yang hua wu bo mo de yan jiu

January 2000 (has links)
by Fung Chi Keung = 採用脈衝直流電源對靶濺射技術製備銦錫氧化物薄膜的硏究 / 馮志強. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / by Fung Chi Keung = Cai yong mai chong zhi liu dian yuan dui ba jian she ji shu zhi bei yin xi yang hua wu bo mo de yan jiu / Feng Zhiqiang. / Acknowledgements --- p.i / Abstract --- p.ii / 論文摘要 --- p.iii / Table of contents --- p.iv / List of figures --- p.viii / List of tables --- p.xii / Chapter Chapter 1 --- Introduction --- p.1-1 / Chapter 1.1 --- Genesis --- p.1-1 / Chapter 1.2 --- Aims and Objectives --- p.1-1 / Chapter 1.3 --- Layout of Thesis --- p.1-3 / References --- p.1-4 / Chapter Chapter 2 --- Literature Review --- p.2-1 / Chapter 2.1 --- Introduction to transparent conducting oxides (TCOs) --- p.2-1 / Chapter 2.2 --- Indium tin oxide (ITO) --- p.2-2 / Chapter 2.2.1 --- Use of ITO --- p.2-2 / Chapter 2.2.2 --- Structure and properties of ITO --- p.2-3 / Chapter 2.3 --- Properties of ITO films deposited by different growth techniques --- p.2-8 / Chapter 2.3.1 --- Sputtering --- p.2-9 / Chapter 2.3.2 --- Vacuum evaporation --- p.2-11 / Chapter 2.3.3 --- Spray pyrolysis --- p.2-11 / Chapter 2.3.4 --- Chemical vapor deposition (CVD) --- p.2-12 / Chapter 2.3.5 --- Reactive ion plating --- p.2-12 / Chapter 2.4 --- Contradictions in existing literature --- p.2-13 / References --- p.2-15 / Chapter Chapter 3 --- Thin Film Fabrication and Process --- p.3-1 / Chapter 3.1 --- Facing-target sputtering (FTS) --- p.3-1 / Chapter 3.2 --- Asymmetric bipolar pulsed DC power source --- p.3-3 / Chapter 3.2.1 --- Target poisoning --- p.3-3 / Chapter 3.2.2 --- Preferential sputtering --- p.3-4 / Chapter 3.2.3 --- Discussion --- p.3-4 / Chapter 3.3 --- Substrates --- p.3-6 / Chapter 3.3.1 --- Microscopic glass --- p.3-7 / Chapter 3.3.2 --- Corning 7059 glass --- p.3-8 / Chapter 3.3.3 --- Epitaxial growth --- p.3-8 / Chapter 3.3.3.1 --- Epitaxial lattice matching --- p.3-8 / Chapter 3.3.3.2 --- Yttrium stabilized zirconia (YSZ) --- p.3-9 / Chapter 3.3.3.3 --- Sapphire --- p.3-9 / Chapter 3.3.3.4 --- Silicon wafer --- p.3-11 / Chapter 3.3.4 --- Substrate cleaning --- p.3-11 / Chapter 3.4 --- Targets for the reactive sputtering of ITO films --- p.3-13 / Chapter 3.4.1 --- Indium Tin Oxide target (90wt% ln203 : 10wt% Sn04) --- p.3-14 / Chapter 3.4.2 --- Indium Tin alloy target (90wt% In : 10wt% Sn) --- p.3-14 / Chapter 3.5 --- Deposition conditions --- p.3-16 / Chapter 3.5.1 --- Sputter atmosphere --- p.3-16 / Chapter 3.5.2 --- Deposition pressure --- p.3-16 / Chapter 3.5.3 --- Deposition power --- p.3-17 / Chapter 3.5.4 --- Target to substrate distance --- p.3-17 / Chapter 3.5.5 --- Pulse frequency and pulse width --- p.3-17 / Chapter 3.6 --- Deposition --- p.3-17 / References --- p.3-19 / Chapter Chapter 4 --- Measurement and Analysis Techniques --- p.4-1 / Chapter 4.1 --- Resistivity measurement --- p.4-1 / Chapter 4.2 --- "Transmittance, reflectivity and absorption measurements" --- p.4-3 / Chapter 4.3 --- Thickness measurement --- p.4-4 / Chapter 4.4 --- "Crystal structure, surface morphology and roughness measurements" --- p.4-4 / Chapter 4.5 --- Photolithography --- p.4-7 / Chapter 4.6 --- Hall effect measurements --- p.4-8 / References --- p.4-10 / Chapter Chapter 5 --- Experimental results and discussions --- p.5-1 / Chapter 5.1 --- Effect of O2 partial pressure --- p.5-1 / Chapter 5.1.1 --- Deposition rate --- p.5-2 / Chapter 5.1.2 --- Electrical and optical properties --- p.5-4 / Chapter 5.1.3 --- Structure and orientation --- p.5-16 / Chapter 5.1.4 --- Surface morphology and roughness --- p.5-22 / Chapter 5.1.5 --- Conclusion --- p.5-29 / Chapter 5.2 --- Effect of substrate temperature --- p.5-29 / Chapter 5.2.1 --- Electrical and optical properties --- p.5-29 / Chapter 5.2.2 --- Structure and orientation --- p.5-44 / Chapter 5.2.3 --- Surface morphology and roughness --- p.5-49 / Chapter 5.2.4 --- Conclusion --- p.5-54 / Chapter 5.3 --- Effect of vacuum annealing --- p.5-54 / Chapter 5.3.1 --- Electrical and optical properties --- p.5-54 / Chapter 5.3.2 --- Conclusion --- p.5-59 / Chapter 5.4 --- Effect of different substrates --- p.5-59 / Chapter 5.4.1 --- Comparison of heteroepitaxial and polycrystalline ITO films --- p.5-60 / Chapter 5.4.2 --- Conclusion --- p.5-63 / Chapter 5.5 --- Effect of film thickness --- p.5-64 / Chapter 5.5.1 --- Film thickness calibration --- p.5-64 / Chapter 5.5.2 --- Electrical properties --- p.5-64 / Chapter 5.5.3 --- Conclusion --- p.5-67 / Chapter 5.6 --- Effect of deposition pressure --- p.5-68 / Chapter 5.6.1 --- Deposition rate --- p.5-68 / Chapter 5.6.2 --- Electrical properties --- p.5-70 / Chapter 5.6.3 --- Conclusion --- p.5-70 / Chapter 5.7 --- Effect of target pre-conditioning --- p.5-72 / Chapter 5.8 --- Conclusion --- p.5-72 / References --- p.5-74 / Chapter Chapter 6 --- Further works --- p.6-1 / Appendix I
1224

Thermal and spectroscopic analyses of reactions in polymer thin films in polymeric light emitting devices =: 以熱學及光譜分析方法硏究與高分子有機電激發光二極元件有關的聚合物薄膜之反應. / 以熱學及光譜分析方法硏究與高分子有機電激發光二極元件有關的聚合物薄膜之反應 / Thermal and spectroscopic analyses of reactions in polymer thin films in polymeric light emitting devices =: Yi re xue ji guang pu fen xi fang fa yan jiu yu gao fen zi you ji dian ji fa guang er ji yuan jian you guan de ju he wu bo mo zhi fan ying. / Yi re xue ji guang pu fen xi fang fa yan jiu yu gao fen zi you ji dian ji fa guang er ji yuan jian you guan de ju he wu bo mo zhi fan ying

January 2002 (has links)
by Yeung Mei Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 122-127). / Text in English; abstracts in English and Chinese. / by Yeung Mei Ki. / Abstract --- p.i / 論文摘要 --- p.iii / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Figures --- p.viii / List of Tables --- p.xi / Abbreviations --- p.xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Polymer light emitting devides --- p.1 / Chapter 1.1.1 --- Development history of PLEDs --- p.3 / Chapter 1.1.2 --- Basic structure of the PLEDs --- p.4 / Chapter 1.1.3 --- Operation principle of the PLEDs --- p.7 / Chapter 1.1.4 --- Electroluminescent (EL) polymers --- p.9 / Chapter 1.2 --- Research motivation and aim of study --- p.11 / Chapter 1.3 --- Thesis outline --- p.16 / Chapter Chapter 2 --- Instrumentation / Chapter 2.1 --- Thermal analysis --- p.18 / Chapter 2.1.1 --- Thermogravimetry (TG) --- p.19 / Chapter 2.1.2 --- Differential scanning calorimetry (DSC) --- p.22 / Chapter 2.2 --- Spectroscopic analysis --- p.27 / Chapter 2.2.1 --- Fourier transform infrared spectroscopy (FTIR) --- p.27 / Chapter 2.2.2 --- X-ray photoelectron spectroscopy (XPS) --- p.32 / Chapter 2.2.3 --- Photoluminescence spectroscopy (PL) --- p.36 / Chapter Chapter 3 --- Experimental metods to charaterize the elimination of / Chapter 3.1 --- Introduction --- p.41 / Chapter 3.2 --- Synthesis of the PPV precursor polymer --- p.43 / Chapter 3.3 --- Average molecular weight of the PPV precursor --- p.46 / Chapter 3.4 --- Thermal elimination of the precursor polymer --- p.48 / Chapter 3.5 --- Thermal stability of the PPV precursor polymer --- p.50 / Chapter 3.5.1 --- Sample preparation --- p.50 / Chapter 3.5.2 --- Experimental --- p.51 / Chapter 3.5.3 --- Results and discussion --- p.52 / Chapter 3.6 --- Structural changes of the precursor polymer during elimination --- p.57 / Chapter 3.6.1 --- Sample preparation --- p.57 / Chapter 3.6.2 --- Experimental --- p.58 / Chapter 3.6.3 --- Results and discussion --- p.58 / Chapter 3.7 --- Chemical composition of the precursor polymer upon elimination --- p.67 / Chapter 3.7.1 --- Sample preparation --- p.67 / Chapter 3.7.2 --- Experimental --- p.67 / Chapter 3.7.3 --- Results and discussion --- p.68 / Chapter 3.8 --- Effect of the conjugation length of the polymer on photoluminescence --- p.74 / Chapter 3.8.1 --- Sample preparation --- p.76 / Chapter 3.8.2 --- Experimental --- p.78 / Chapter 3.8.3 --- Results and discussion --- p.79 / Chapter 3.9 --- Conclusions --- p.89 / Chapter Chapter 4 --- Experimental methods to characterize the water absorption by PEDOT:PSS / Chapter 4.1 --- Introduction --- p.90 / Chapter 4.2 --- Determination of the water content of PEDOT:PSS at different relative humidity using TG --- p.93 / Chapter 4.2.1 --- Experimental --- p.94 / Chapter 4.2.2 --- Results and discussion --- p.96 / Chapter 4.3 --- Determination of bounded water content of PEDOT:PSS at different RH by DSC --- p.98 / Chapter 4.3.1 --- Experimental --- p.98 / Chapter 4.3.2 --- Results and discussion --- p.100 / Chapter 4.4 --- Determination of bounded water content of PEDOT:PSS at different RH by FTIR --- p.108 / Chapter 4.4.1 --- Experimental --- p.109 / Chapter 4.4.2 --- Results and discussion --- p.112 / Chapter 4.5 --- Conclusions --- p.118 / Chapter Chapter 5 --- Conclusions --- p.120 / References --- p.122
1225

Characterization of ta-C film prepared by pulsed filtered vacuum arc deposition system.

January 2000 (has links)
Lau Wing Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 101-105). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese version) --- p.iii / Acknowledgement --- p.iv / Content --- p.v / List of figure caption --- p.vii / List of table caption --- p.xi / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Nomenclature --- p.1 / Chapter 1.2 --- Comparison of diamond and DLC --- p.2 / Chapter 1.3 --- Comparison of the amorphous hydrogenated and hydrogen free amorphous carbon --- p.4 / Chapter 1.4 --- Application of DLC --- p.7 / Chapter 1.5 --- ta-C growth mechanism --- p.9 / Chapter 1.6 --- Recent activities on ta-C films --- p.11 / Chapter 1.7 --- Goal of this project and organization of this thesis --- p.11 / Chapter Chapter 2 --- Deposition of ta-C films / Chapter 2.1 --- Ta-C film deposition systems --- p.12 / Chapter 2.1.1 --- Direct ion beam deposition --- p.13 / Chapter 2.1.2 --- Laser ablation --- p.14 / Chapter 2.1.3 --- Mass selected ion beam deposition (MSIBD) --- p.15 / Chapter 2.1.4 --- Arc discharge and filtered arc discharge (FAD) methods --- p.16 / Chapter 2.2 --- The pulsed filtered vacuum arc deposition system --- p.18 / Chapter 2.2.1 --- Working principle --- p.18 / Chapter 2.2.2 --- Film thickness control --- p.20 / Chapter 2.3 --- System modification --- p.22 / Chapter 2.3.1 --- Cathode erosion improvement --- p.22 / Chapter 2.3.2 --- Enhancement of stabilization of the cathodic arc --- p.23 / Chapter 2.4 --- Sample preparation --- p.24 / Chapter 2.4.1 --- Film deposition --- p.24 / Chapter 2.4.2 --- Thermal treatments --- p.24 / Chapter Chapter 3 --- Characterization methods / Chapter 3.1 --- Raman spectroscopy --- p.25 / Chapter 3.2 --- IR Photoelasticity (PE) --- p.27 / Chapter 3.2.1 --- Basic principle --- p.27 / Chapter 3.2.2 --- Senarmont method --- p.30 / Chapter 3.3 --- Ellipsometry --- p.33 / Chapter 3.3.1 --- Principle of ellipsometry --- p.33 / Chapter 3.3.2 --- Mathematical representation --- p.37 / Chapter 3.3.2a --- Bulk layer --- p.37 / Chapter 3.3.2b --- Single layer structure --- p.38 / Chapter 3.3.3 --- Spetroscopioc rotating analyzer ellipsometer --- p.39 / Chapter 3.3.4 --- Analysis method --- p.42 / Chapter 3.3.5 --- Forouhi and Bloomer (F.B.) model --- p.43 / Chapter 3.4 --- Tribology --- p.44 / Chapter 3.4.1 --- The definition of friction --- p.44 / Chapter 3.4.2 --- Tribometer --- p.46 / Chapter Chapter 4 --- Results / Chapter 4.1 --- As-deposited samples --- p.47 / Chapter 4.1.1 --- Sp3 fraction --- p.47 / Chapter 4.1.2 --- Stress --- p.52 / Chapter 4.1.3 --- Optical properties --- p.57 / Chapter 4.1.3.1 --- Optical model for ta-C film --- p.57 / Chapter 4.1.3.2 --- Figure of merit --- p.59 / Chapter 4.1.3.3 --- Result and discussion --- p.59 / Chapter 4.1.4 --- Mechanical properties --- p.70 / Chapter 4.1.4.1 --- Hardness --- p.70 / Chapter 4.1.4.2 --- Friction --- p.76 / Chapter 4.2 --- Annealed samples --- p.81 / Chapter 4.2.1 --- Thermal stability of the ta-C film --- p.81 / Chapter 4.2.2 --- Stress relaxation --- p.85 / Chapter 4.2.3 --- Stress and G peak shift --- p.92 / Chapter Chapter 5 --- Future work / Chapter 5.1 --- Film roughness and thickness profile improvement --- p.95 / Chapter 5.2 --- Pulsed substrate bias --- p.97 / Chapter 5.3 --- Field emission and doping possibility --- p.97 / Chapter Chapter 6 --- Conclusion --- p.98 / Reference --- p.101 / Conference / publications --- p.105
1226

Electric field assisted chemical vapour deposition processes on titanium dioxide thin films for photocatalysis

Romero, Luz January 2014 (has links)
This work investigates the use of the novel electric field assisted chemical vapour deposition (EACVD) process in the production of titanium dioxide thin films for photocatalytic applications on glass substrate. This work looks into the interaction of applied electric fields with the precursor species during the aerosol assisted chemical vapour deposition (AACVD) and atmospheric pressure chemical vapour deposition (APCVD) reaction of Titanium isopropoxide (TTIP) and Titanium (IV) Chloride (TiCl4) with different solvents. The electric field was generated by applying a potential difference between two fluorine-doped tin oxide glass sheets. The electric field was varied between 0 – 3000 Vm-1. The deposited films were analysed and characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, atomic force microscopy, UV-vis spectroscopy, water-contact angles and resazurin photcatalytic testing. It was observed that the application of electric fields produced changes in the morphology, particle size, growth rate, crystal orientation and crystal phases. Generally, films produced under the influence of the electric fields showed higher photo-activity than films produced in absence of electric fields. The deposited films produced from the electric field assisted aerosol chemical vapour deposition (EAACVD) showed higher photo-activity with applied AC electric fields than with applied DC electric fields. Likewise, they showed higher photo-activity than the deposited films produced from the electric field assisted atmospheric pressure chemical vapour deposition (EAAPCVD) with applied AC electric fields. The results obtained were explained by the interaction mechanisms between the electric fields and the precursor species, which differ depending on the CVD technique used. Although titanium dioxide photo-activity is comprised by a combination of factors, it was observed that an optimum can be obtained by varying both experimental conditions and field strength. In particular, optimum results were obtained for deposited films which showed long-shaped particles, reduced particle size and high preferential orientation in the anatase (004) plane. Electric field assisted chemical vapour deposition (EACVD) shows a great potential for the improvement of commercial products available in the market such as self-cleaning and antibacterial surfaces.
1227

Self-Assembled Systems for Molecular Device Applications

Cooper, Christopher G. F. 30 April 2004 (has links)
The rational design, synthesis, and characterization of several systems that undergo self-assembly are described. Systems were chosen based on their ability to self-assemble in a highly ordered and predictable fashion that imparts order on the structure such that it is able to perform a given device function. Herein we describe self-assembled multilayered thin films on gold that can behave as molecular wires with tunable length, photocurrent generating films, and surfaces with photoswitchable wettability, and self-assembling peptide nanotubes that can potentially function as long range energy and electron transfer conduits. A non-covalent, modular approach to multilayered thin film fabrication was used to generate three thin film systems that function as molecular scale wires, photocurrent generating devices, and photoswitchable thin films, respectively. These films were based on 4-[(10-mercaptodecyl)oxy]pyridine-2,6-dicarboxylic acid self-assembled monolayers on gold. These monolayers are able to chelate metal (II) ions, and thus multilayers were assembled based on metal-ligand coordination chemistry. The three systems described were characterized by contact angle measurements, electrochemical methods, and grazing angle IR spectroscopy. All three systems emphasize the versatility of a modular approach to thin film construction, and provide proof-of-concept for future studies. A cyclic octapeptide architecture was employed as a scaffold for the predictable self-assembly of photoactive groups within a nanotubular structure. The degree of cyclic peptide aggregation in stacking nanotube systems and non-stacking monomer systems, was studied via fluorescence emission spectroscopy. Based on the spectral results, it was determined that peptide nanotubes can be constructed such that photoactive side chains can be assembled in stacks. Future experiments for the determination of long range energy and/or charge transfer in these systems are also discussed.
1228

Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

Wang, Ying January 2016 (has links)
Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO₂ interfacial energy (i.e., σ_{Si-SiO₂}). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified as being the key parameter responsible for inducing the observed microstructure evolution. The present thesis builds on the abovementioned body of work on MPS. To this end, we note that the limited scope of previous investigations motivates us to perform more thorough characterization and analysis of the experimental results. Also, we endeavor to provide more involved explanations and expressions to account for the observed microstructure evolution in terms of the proposed thermodynamic model. To accomplish these tasks forms the motivation for the first portion of this thesis. In this section we further develop the thermodynamic model by refining the expression for the solid-liquid interface velocities. In addition, we develop an expression for the grain-boundary-location-displacement distance in an MPS cycle. This is a key fundamental quantity that effectively captures the essence of the microstructure evolution resulting from MPS processing. Experimentally, we conduct a thorough investigation of the MPS process by focusing on examining the details of the microstructure evolution of {100}-surface-oriented grains. Firstly, we examine and analyze the gradual evolution in the microstructure of polycrystalline Si films being exposed to multiple MPS cycles. A Johnson-Mehl-Avrami-Kolmogorov-type (JMAK-type) analysis is proposed and developed to describe the microstructure transformation. Secondly, we investigate the behavior of grains with surface orientations close to the <100> pole. Orientation-dependent (in terms of their extent of deviation from the <100> pole) microstructure evolution is revealed. This observation indicates that the microstructure of the film continues to evolve to form an even tighter distribution of grains around the <100> pole as the MPS process proceeds. During MPS melting-and-solidification cycles, a unique near-equilibrium environment is created and stabilized by radiative beam heating. Therefore, the microstructure of the resulting films is expected to be explicitly and dominantly affected by various thermodynamic properties of the system. Specifically, we identify the orientation-dependent value of the Si-SiO₂ interfacial energy as a key factor. This being the case, the MPS method actually provides us with an ideal platform to experimentally study the Si-SiO₂ interfacial energy. In the second part of this thesis, we perform MPS-based experiments to systematically investigate the orientation-dependent Si-SiO₂ interfacial energy. Two complementary approaches are designed and conducted, both of which are built on examining the texture evolution of different surface orientations resulting from MPS melting-and-solidification cycles. The first approach, “Large-Area Statistical Analysis”, statistically examines the overall microstructure evolution of non-{100}-surface-oriented grains. By interpreting the changes in the surface-orientation distribution of the grains in terms of the thermodynamic model, we identify the orientation-dependent hierarchical order of Si-SiO₂ interfacial energies. The second approach, “Same-Area Local Analysis”, keeps track of the same set of grains that undergo several MPS cycles. An equivalent set of information on the Si-SiO₂ interfacial energy is extracted. Both methods reveal, in a consistent manner, an essentially identical Si-SiO₂ interfacial energy hierarchical order for a selected group of orientations. Also, the “Same-Area Local Analysis” provides some additional information that cannot otherwise be obtained (such as information about the evolution of two adjacent grains of specific orientations). Using such information and based on the grain-boundary-location-displacement distance derived using the thermodynamic model, we further deduce and evaluate the magnitude of Δσ_{Si-SiO₂} for certain orientation pairs.
1229

2D Materials: Synthesis, Characterization, and Applications

Chenet, Daniel January 2016 (has links)
The isolation of monolayer graphene by Andre Geim and Konstantin Novoselov in 2004 created an explosion of layered materials research in the fields of condensed matter physics, material science, electrical engineering, chemistry, and nanobiology, to name a few. The applications have been broad from enhancing electrode performance in batteries to gas sensing to high-frequency analog flexible electronics. For several years and still to this day, graphene has provided a fertile ground for research due to its superior properties. However, failed efforts to engineer a substantial bandgap, a requirement for digital electronics, led researchers to look elsewhere in the periodic table for other layered materials with rich physics and an even broader application space. Fortunately, the technical expertise developed in the graphene system could, for the most part, be leveraged and modified in these new material systems. This thesis presents a brief history of the field of two-dimensional electronics. The rediscovery - and it can only really be characterized as such since most of these materials were studied in the bulk form going back to the 1960s - of these two-dimensional materials with properties ranging from superconductivity, piezoelectricity, optical and electrical anisotropy, and large magnetoresistivity required the development of new characterization techniques to address the perturbations that accompanied the “thinning” of layers. Several characterization techniques were developed and are presented in this thesis. Moreover, in an effort to push these materials closer towards technological viability, synthesis techniques were developed that enabled the systematic study of a prototypical material system, molybdenum disulfide (MoS₂), in order to address the challenges that accompany scalability and determine the structure-property-function relationship.
1230

Effect of spacer in transport and diffusion properties of colossal magnetoresistance multilayers. / 間層對龐磁阻多層薄膜的傳導與擴散特性的影響 / Effect of spacer in transport and diffusion properties of colossal magnetoresistance multilayers. / Jian ceng dui pang ci zu duo ceng bo mo de zhuan dao yu kuo san te xing de ying xiang

January 2007 (has links)
Huang, Chun Fuk = 間層對龐磁阻多層薄膜的傳導與擴散特性的影響 / 黃真福. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / Huang, Chun Fuk = Jian ceng dui pang ci zu duo ceng bo mo de chuan dao yu kuo san te xing de ying xiang / Huang Zhenfu. / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Magnetoresistance --- p.1 / Chapter 1.1.1 --- Giant magnetoresistance (GMR) --- p.3 / Chapter 1.1.2 --- Colossal magnetoresistance (CMR) --- p.5 / Chapter 1.1.3 --- Double exchange mechanism --- p.6 / Chapter 1.1.4 --- Jahn-Teller effect --- p.10 / Chapter 1.1.5 --- Tolerance factor --- p.12 / Chapter 1.1.6 --- Effect of Doping --- p.14 / Chapter 1.1.7 --- Charge-ordering effect --- p.16 / Chapter 1.1.8 --- Phase separation and percolation theory --- p.17 / Chapter 1.2 --- Our motivation --- p.18 / Chapter 1.3 --- Review of manganite multilayer system --- p.20 / Chapter 1.4 --- Scope of this thesis --- p.21 / References --- p.22 / Chapter Chapter 2 --- Instrumentation / Chapter 2.1 --- Thin film deposition --- p.24 / Chapter 2.1.1 --- Facing-target sputtering (FTS) --- p.24 / Chapter 2.1.2 --- Vacuum system --- p.26 / Chapter 2.2 --- Oxygen annealing system --- p.28 / Chapter 2.3 --- Characterization --- p.30 / Chapter 2.3.1 --- α-step profilometer --- p.30 / Chapter 2.3.2 --- X-ray diffraction (XRD) --- p.30 / Chapter 2.3.3 --- Resistance measurement --- p.32 / References --- p.34 / Chapter Chapter 3 --- Epitaxial growth of LCMO and LSMO single layer thin films / Chapter 3.1 --- Fabrication and characterization of LCMO and LSMO targets --- p.35 / Chapter 3.2 --- Epitaxial growth of LCMO and LSMO thin films --- p.41 / Chapter 3.2.1 --- Substrate materials --- p.41 / Chapter 3.2.2 --- Deposition conditions --- p.42 / Chapter 3.2.3 --- Deposition procedures --- p.44 / Chapter 3.3 --- Characterization of single layer films --- p.45 / References --- p.50 / Chapter Chapter 4 --- Lao.67Ca0.33MnO3/La0.4Ca0.6MO3 multilayers and La0.67Ca0.33MnO3 /La0.2̐ơإSr0.75MnO3 multilayers / Chapter 4.1 --- Sample preparation --- p.51 / Chapter 4.2 --- As-grown multilayers --- p.53 / Chapter 4.2.1 --- Structural characterization of as-grown samples --- p.53 / Chapter 4.2.2 --- Transport properties of as-grown samples --- p.59 / Chapter 4.3 --- Oxygen post annealing of multilayer thin films --- p.68 / Chapter 4.3.1 --- Introduction to post annealing of manganite oxides --- p.68 / Chapter 4.3.2 --- Oxygen post annealing conditions --- p.69 / Chapter 4.4 --- Results and discussion of oxygen post-annealing samples --- p.71 / Chapter 4.4.1 --- Structural characterization of oxygen post-annealing samples --- p.71 / Chapter 4.1.1.1 --- Effect of chemical composition --- p.71 / Chapter 4.4.1.2 --- Effect of relative thickness --- p.73 / Chapter 4.4.2 --- Transport properties of oxygen post-annealing samples --- p.84 / References --- p.95 / Chapter Chapter 5 --- Conclusion --- p.97

Page generated in 0.0566 seconds