Spelling suggestions: "subject:"than"" "subject:"then""
1191 |
Shear Deformation in Thin Polymer Films as a Probe of Entanglement in Confined SystemsSi, Lun January 2003 (has links)
We present the results of our study of the shear deformation zone in free-standing thin polymer films as a probe of entanglement in confined systems. A stretching system was used to uniaxially strain thin polystyrene (PS) films. Atomic force microscopy was used to measure the thicknesses of the shear deformation zone (SDZ), hc, and the film thicknesses h. The maximum extension ratio 2 - h/hc, was measured as a function of film thickness. The results show that A increases with the decreasing film thickness which implies an increase in the entanglement molecular weight in confinement. The same experiments were carried out for thin PS film with different molecular weights. A tentative model was developed to explain the experimental results and found to be in good agreement with the data. More exciting is the fact that the model predicts a scaling dependence on the polymer molecular weight which was also observed. / Thesis / Master of Applied Science (MASc)
|
1192 |
Electro-optic Properties of Semiconductor Nano-crystals And Electro-optic Polymers And Their ApplicationsZhang, Fajian 29 October 2002 (has links)
In recent years, electro-optic polymers have been used to make various optical devices in the telecommunication field due to several advantages, such as large and fast electro-optic (EO) response. Semiconductor nano-crystals promise even higher response speed due to the unique quantum confinement mechanism, and they also show very high EO response because of surface and quantum size effects.
Many investigative efforts have been made in the area of semiconductor nano-clusters. These efforts mainly focus on synthesizing high quality particles, and their physical and chemistry properties (luminescence spectra, nonlinear optical, and other effects), but their electro-optic properties and potential uses in devices have not been fully investigated, so there is still much work to do in this aspect. For application of electro-optic polymers in electro-optic devices, the challenges are to develop more stable electro-optic polymers with higher electro-optic coefficients.
The electrostatic self-assembly (ESA) technique has many advantages over traditional polymer electro-optic film synthesis processes, such as spin coating. For ESA-generated EO films, no poling field is needed, high orientation of the EO polymer can be obtained which does not degrade with time, so the films can be very stable, and this processing is easily compatible with semiconductor VLSI technology. This is a very attractive technique.
The goal of this research is to develop new electro-optic materials by means of ESA techniques and to use them to form improved performance next generation electro-optic devices, with emphasis on two kinds of electro-optic materials: nano-sized II-VI semiconductors (CdS, CdSe), and electro-optic active polymers (chromophores), and their potential use in electro-optic devices.
In this research work, II-VI semiconductor nano-clusters have been synthesized, with particle diameters ranging from 4 nm to several tens of nanometers. There is a difference in peak positions of absorption and photo luminescence spectra, related to defects in nano-crystals. Larger CdS particles have larger differences than small CdSe particles. Particle sizes measured by absorption spectrum and by HRTEM methods are very close. Based on quantum mechanical theory, peak spectral shifts as a function of particle size can be predicted, but the theoretical results are typically far from the experimental results, because many complicating factors should be considered. Films fabricated by ESA have much stronger absorption than spin coated films, and exhibit a slight blue shift in peak position wavelength. Photo luminescence spectra also show a blue shift for ESA films with respect to spun films.
Polymeric electro-optic films were also fabricated by the ESA technique. Effects due to applying an external electrical field during the ESA process on film growth and properties have also been investigated. Peak position, optical density and wavelength at maximum absorption, all increase with the number of bilayers, and films made under external fields have lower absorption and peak wavelength than those of films fabricated without an external field. These results are related to the order parameter, and indicate that molecule alignment can be improved by the application of an external field during the process of ESA film growth.
CdSe nano-clusters have a much higher electro-optic coefficient than their bulk crystal counterparts. In comparison with polymers, they have totally different origins in their electro-optic effects. For both nano-cluster-and chromophore based ESA films, electro-optic coefficients are hi gher than those of spin-coated films, and no poling voltage is needed. The reasons have been fully discussed. This result means that the ESA technique is effective to align and hold the dipoles in films and to intensify the electro-optic effect.
CdSe quantum dots need 17. 5 ms to complete their physical orientation due to a rotation of the permanent dipole moment. Therefore, at lower frequencies (<100Hz), electro-optic modulation mainly stems from the orientation of the permanent dipole moment. At frequencies higher than 100 Hz, the electro-optic modulation mainly arises from the induced dipole moment orientation and pure electron movement.
The ratio of the electro-optic coefficients r333/r113 > 3. This means that ESA films cannot be treated as an ideal isotropic system with the C v symmetry, and interactions should be considered. Quadratic Kerr electro-optic coefficients have a similar frequency dependence to that of the linear electro-optic coefficients r333 and r113. This indicates that the orientational distribution of the CdSe quantum dots particularly contributes to the quadratic electro-optic modulation.
From the FT-IR measurement of the films, proton irradiation can break the N=N double bonding in pi-conjugated bridges, leading to damage of the conjugating structure, so causing a decrease of the EO coefficient. But the thermal and temporal stability of ESA films are much better than those of spin coated films; this is a significant feature of ESA technique.
The effect of an external field and film thickness on the optical and electro-optic properties of ESA films has been investigated. Electro-optic coefficient decreases with thickness. Electrical field influences the electronic states of the chromophores.
Based on the properties of electro-optic films, the applications of polymer and nano-cluster electro-optic films are discussed. A nano-cluster CdSe electro-optic film has a higher refractive index than the PS-119 polymer film, and these values they are much lower than that of semiconductor wafers, but slightly higher than optical silica glasses. Accordingly optical silica glasses are the ideal substrates for those films. By analysis, the cutoff thickness was determined, which defines the minimum film thickness required for light propagation. For channel waveguides, the aspect ratio w/t, w, and t are determined versus the refractive index of the electro-optic films. Modulator beam length and modulation index were discussed, for high speed operation. Modulator beam length should be carefully chosen to obtain high modulation index; similarly important is the refractive index match between core, substrate, and cladding layers. For high speed operation, traveling wave electrode designs were considered, based on effective refractive index and impedance matching. The effective dielectric constant and characteristic impedance as a function of electrode configuration (sizes) were diagramed, and this served as a basic design suggestion for traveling wave electrodes. / Ph. D.
|
1193 |
Optical property studies and metalorganic chemical vapor deposition of ferroelectric thin filmsPeng, Chien-Hsiung 06 June 2008 (has links)
Ferroelectric lead zirconate titanate thin films, Pb(ZrxTi 1-x)0 3 or PZT, have aroused considerable interest in recent years for the application in nonvolatile electronic memories because of their excellent ferroelectric properties. In this research, PZT thin films were studied from two aspects: the scientific aspect and the technical aspect.
The optical properties of PZT solid solutions and the structure development in PZT films were extensively investigated in the scientific aspect. The PZT films used in this part of study were prepared by metalorganic decomposition (MOD) process. The envelope method, with consideration of light intensity loss from the back surface of the substrate, was demonstrated to be a simple and convenient tool for obtaining the optical properties of the PZT films in the medium and weak absorption regions. In the near optical band gap region, both the transmission and reflection spectra were used to successfully calculate the optical constants of the films. The film thickness derived from the envelope method was cross checked by a computer simulation method and was found to have an accuracy better than 2%. An effective, versatile, and nondestructive optical method was developed for the study of the structure development in MOD PZT films. Also, the models for the structure development were proposed and were verified by this optical method. Using this method, the characteristic temperatures (i.e., the initiation and completion temperatures) of each phase can be easily identified. In addition, the volume fraction of the perovskite phase in the pyrochlore-perovskite phase transformation region was obtained from this optical method.
From the technical point of view, ferroelectric PZT films were successfully and reproducibly deposited for the first time by hot-wall metalorganic chemical vapor deposition (MOCVD). One of the problems associated with the MOCVD technique is the availability of the precursors. After intensive studies searching for the most suitable precursors for MOCVD PZT thin films, the safe and stable precursors, namely lead tetramethylheptadione [Pb(thd)2)], zirconium tetramethylheptadione [Zr(thd)4], and titanium ethoxide [Ti(OEt)4] were chosen. The films were deposited at temperatures as low as 55QOC and had pure perovskite phase in the as-deposited state. Also, the films were smooth, specular, crack-free, uniform, and adhered well on the substrates. The stoichiometry of the films can be easily controlled either by varying the individual precursor temperature and/or the flow rate of the carrier gas. Auger electron spectroscopic (AES) depth profile showed good uniformity through the thickness of the films. The AES spectra also showed no carbon contamination in the bulk of the films. As-deposited films were dense and showed uniform and fine grains. The film (Pb/Zr/Ti = 50/41/9) annealed at 6QQOC showed a spontaneous polarization of23.3 pC/cm² and a coercive field of 64.5 kV /em. / Ph. D.
|
1194 |
Synthesis and Characterization of Ferroelectric (1-x)SrBi2Ta2O9-xBi3TaTiO9 thin films for Non-volatile memory ApplicationsRyu, Sang-Ouk 12 May 1999 (has links)
The (1-x)SrBi2Ta2O9-xBi3TaTiO9 thin films fabricated by modified metalorganic solution deposition technique showed much improved properties compared to SrBi2Ta2O9: a leading candidate material for memory applications. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 600 oC and grain size was found to be considerably increased for the (1-x)SrBi2Ta2O9-xBi3TaTiO9 compositions. The film properties were found to be strongly dependent on the composition and annealing temperatures. The measured dielectric constant of the thin films was in the range 180-225 for films with 10-50 mol % of Bi3TaTiO9 content in the solid solution. Ferroelectric properties of (1-x)SrBi2Ta2O9-xBi3TaTiO9 thin films were significantly improved compared to SrBi2Ta2O9. For example, the observed 2Pr and Ec values for films with 0.7SrBi2Ta2O9-0.3Bi3TaTiO9 composition, annealed at 650 oC, were 12.4 micro C/cm2 and 80 kV/cm, respectively. The solid solution thin films showed less than 5 % decay of the polarization charge after 10^10 switching cycles and good memory retention characteristics after about 10^6 s of memory retention.
The size and temperature effect of 0.7SrBi2Ta2O9-0.3Bi3TaTiO9 thin films were studied by determining how the ferroelectric properties vary with film thickness and temperature. It was found that the ferroelectric properties were determined by the grain size, and not by the thickness of the film in our studied thickness range of 80-350 nm. A 80 nm thick film showed good ferroelectric properties similar to the 350 nm thick film. Thermal stability of the 0.7SrBi2Ta2O9-0.3Bi3TaTiO9 thin film was found to be much better compared to the SrBi2Ta2O9 and Pb(Zr,Ti)O9 thin films due to its higher Curie temperature and lower Schottky activation energy according to temperature changes. Also, 0.7SrBi2Ta2O9-0.3Bi3TaTiO9 thin films has shown good ferroelectric properties on multilayer system such as PtRh/PtRhOx/poly-Si suggest their suitability for high density FRAM applications. / Ph. D.
|
1195 |
Integration of Ferroelectric Materials into High Density Non-Volatile Random Access MemoriesTirumala, Sridhar 08 September 2000 (has links)
The characteristic polarization response of a ferroelectric material to an applied electric field enables a binary state device in the form of a thin film ferroelectric capacitor that can be used to store digital information. In a high density memory the capacitor is placed on the top of a poly-silicon plug which is connected to the drain of a transistor. Such a configuration poses constraints on the processing conditions of the ferroelectric capacitor in addition to the already existing reliability issues of a ferroelectric capacitor. The current research is an attempt to integrate the ferroelectric capacitor directly into a high density memory structure.
Pb<sub>1.1</sub>Zr<sub>0.53</sub>Ti<sub>0.47</sub>O₃ (PZT) and SrBi₂Ta₂O₉ (SBT) are two most promising materials for ferroelectric memory applications. PZT has excellent ferroelectric properties with wide operating temperature range. However, PZT exhibits a considerable loss of switchable polarization with cumulative switching cycles. This phenomenon is known as fatigue and is one of the critical problems affecting the life time of ferroelectric memories. In this research, Ir based electrodes are shown to improve fatigue characteristics of PZT based capacitors not only by enhancing a homogenous growth of perovskite phase of PZT but also by lowering the entrapment of oxygen vacancies at the interface. These Ir electrodes also acted as diffusion barriers for silicon, oxygen and lead. Additionally, Ir electrodes were found to be chemically stable at the processing temperatures of PZT capacitors. These features of Ir based electrodes could help in realization of a practical PZT based high density non volatile random access memories. SBT is an another promising ferroelectric material for ferroelectric memory applications. While SBT has a fatigue free nature, it has a very high processing temperature (>800 °C). Such a high processing temperature limits the choice of electrodes that could be used to integrate the ferroelectric capacitor into the high density memory structure. In this research, an attempt is made to lower the processing temperature and suitable electrodes are chosen accordingly, to enable the integration of SBT based capacitors into high density memories. Lowering the processing temperature was obtained by growing a-b oriented SBT crystallites rather than c-axis oriented crystallites. Additionally, reliability (degradation) and yield of SBT thin film capacitors was found to be correlated to the amount of segregated bismuth oxide in the films. Elimination of secondary phase bismuth oxide was found to result in dramatic improvement in the reproducibility of SBT thin films with a processing temperature close to 750 °C.
PtRh based electrodes were found to be quite suitable for integrating SBT capacitors into high density memory structures. These electrodes could withstand a processing temperature of 750 °C while preventing the interdiffusion of silicon, oxygen and bismuth. A solid solution of SBT and Bi₃TiNbO₉ (BTN) is made which reduced the processing temperature of the capacitor material from 750 °C to 650 °C while retaining the excellent fatigue and retention characteristics of SBT. / Ph. D.
|
1196 |
Processing - structure - property interrelationships of ferroelectric thin films with emphasis on formation kineticsKwok, Chi Kong 19 October 2006 (has links)
Lead zirconate titanate (PZT) is a ferroelectric material which has many interesting properties. Recently, PZT thin films have been considered as one of the most promising materials for the application of nonvolatile electronic memories. In this study, a sol-gel process for PZT film preparation was adopted and greatly modified. PZT films with very desirable electrical properties have been successfully prepared by this modified sol-gel process.
One of the problems of incorporating PZT films into the DRAM devices is the need of high post-deposition annealing temperatures which complicates their integration into the existing semiconductor manufacturing process. In this work, formation kinetics of PZT films were studied and the nucleation was found to be the rate-limiting step in the formation of the perovskite phase. Based on this finding, a seeding process was invented to encourage the nucleation of the perovskite phase. As a result of this seeding process, the transformation temperature has been lowered by as much as 100°C. The seeded PZT films also have good ferroelectric properties.
The ferroelectric domain structures, and the metastable pyrochlore phase including its transformation to the perovskite phase have been investigated by transmission electron microscopy (TEM). The domain structures of the PZT films had the {lID} <110> orientation and most of them were 90° domains. The TEM study of the pyrochlore to perovskite transformation provides valuable insight on the formation of the perovskite phase.
Among all the processing steps, the drying process of the sol-gel films created the highest growth stress. In addition, the thin film stress study was also used to determine the transformation stress and Curie temperature.
The effects of composition, thermal processing conditions, and film thickness on electrical properties have been studied. Some of the notable results are as follow: (1) PZT films with a Zr/Ti ratio of 53/47, the morphotropic boundary (MPB) composition, have the highest remanent polarization and the lowest coercive field. (2) The optimum annealing temperatures for most of the PZT compositions are found to be about 50°C higher than the completion temperature of the perovskite formation (T<sub>c</sub><sup>per</sup>) of the same composition. (3) PZT films with film thicknesses greater than or equal to 170 nm have electrical properties very close to those of the thicker films and are not susceptible to dielectric breakdown at an applied voltage of 5 V. / Ph. D.
|
1197 |
The Effects of Backfilling on Ground Control and Recovery in Thin-Seam Coal MiningDonovan, James G. 27 May 1999 (has links)
A large percentage of Southern Appalachian coal reserves are located in seams less than 36" thick. As thicker and currently more mineable, deposits are exhausted, methods of underground thin-seam extraction will have to be developed. These methods must be capable of removing coal efficiently and economically. Past experience with highwall mining of thin-seam coal has indicated that recovery rates tend to be lower than in conventional operations. It is suspected that this will also apply to underground thin-seam mining, regardless of proposed technology or mining method. A method of increasing recoveries from thin-seam mining operations is necessary in order to exploit thin-seam reserves.
Backfilling is one alternative that may find applicability in thin-seam coal mining. The ability of backfill to provide additional ground support may enhance coal recovery by allowing for the design of undersized pillars. Backfill has been used extensively in hard rock mining but has found limited use in coal mining. Its adaptability to thin-seam coal mining has been examined and is presented in this thesis.
Backfill is capable of providing additional ground support by restricting lateral deformation of surrounding coal pillars and roof. This additional support can result in significant increases in recovery from thin-seam coal deposits. However, the overall feasibility of backfill is dependent on the in situ behavior of the fill material, the properties of the fill, the effects of the filling method on the total mining operation, and the cost of filling per extra ton of coal recovered. The influence of these parameters has been studied and indicate that, in certain situations, backfilling for the purpose of increasing recovery rates from thin-seam coal mines is feasible. / Master of Science
|
1198 |
Development of an Underground Automated Thin-Seam Coal Mining MethodHolman, Darren Wayne 03 June 1999 (has links)
It is predicted that coal mining in Southwest Virginia, and the economic stability that it brings to the area, will continue to decline over the next decade unless an environmentally sound, and economically viable means can be found to extract seams of high quality coal in the thickness range of 14 to 28 inches. Research into autonomous machine guidance, coupled with developments of thin-seam mining equipment, offer new opportunities for devising mining layouts suitable for extracting these thin seams in a cost effective manner. These layouts must involve well-planned transportation and ventilation routes that will allow safe conditions for personnel. This implies that the mining face, where coal is extracted, will be completely automated, ensuring the safety of the workers.
This thesis presents a brief overview of current technologies utilized for underground coal mining in the United States. This is followed by a review of developments in highwall mining that are potentially applicable in underground mining of thin seams. Some past attempts at thin seam mining are discussed, and evaluated for their short comings. An overview of the more recent advances in the guidance systems for use in autonomous mining machines is also presented. The new advances that several manufacturers are developing to address the integration of mining and continuous haulage systems are also investigated. That background is employed in devising a conceptual mining system for the underground mining of coal seams in the 14 to 28 inch range of thickness. This thesis proves that adapting new technologies and concepts from existing ones can lead to meaningful advances in the field of natural resources recovery. This system utilizes a newly designed panel layout that takes into account haulage, supplying, ventilation, equipment, and machine guidance. This system is proposed to show that new ways can be developed to take advantage of the reserves in the 14 to 28 inch range of thickness. This shows that new technology and design innovation can turn currently uneconomic resources, into economic reserves. This kind of innovation is what is needed to keep this region of Southwest Virginia economically viable.
This system is a huge step in the direction that thin-seam research needs to take. Most of the equipment suggested for this proposed system is already available. / Master of Science
|
1199 |
Design and Fabrication of Polymer/Graphene Laminate Thin FilmsCroft, Zacary Lane 05 September 2024 (has links)
The development of graphene-based electronics may produce a new generation of electronic devices with enhanced performance over traditional materials. However, quality graphene electronics will require large-area, continuous graphene film produced by chemical vapor deposition (CVD), which is typically not stable when free-standing. Instead, CVD graphene may be coupled with polymer thin films to produce polymer/graphene laminates (PGLs), which show improved mechanical stability and good electrical conductivity over large areas. For example, single-layer graphene (SLG) has been coupled with polyetherimide (PEI) to produce thin film audio speakers with significantly enhanced energy efficiency compared to traditional speaker designs. However, the poor design and fabrication of PGLs may degrade the interfacial interactions of polymers with graphene and make the interface more susceptible to deformation. Interfacial weakening then limits their long-term reliability and performance in micro- and nano-electromechanical systems (MEMS/NEMS), in which materials are constantly subjected to dynamic loads. In this dissertation, we construct a framework for developing PGL thin films with controlled interfacial properties based on the rational design of polymer substrates and careful consideration of fabrication-induced defects. We evaluate this framework from several angles. First, the design of PEI/SLG film thickness is explored for controlling mechanical mixing and composite Young's modulus. Then, the role of thermal annealing during PEI/SLG fabrication is examined and its effect of mechanical mixing studied. Finally, we investigate mechanical fatigue in PEI/SLG thin films under dynamic loading with different pre-tensions.
The design of mechanical properties in PGLs is crucial for ensuring long-term stability and operational performance. The Young's modulus is an important mechanical parameter governed by mechanical mixing in PGLs, and better mechanical mixing is facilitated by improved stress transfer efficiency at the polymer/graphene interface. Thus, the control of mechanical mixing through PGL design is an important research topic for developing PGL thin films with good mechanical performance. To this end, we evaluated the design of PEI/SLG thin films with precisely controlled thicknesses to afford control over mechanical mixing and the composite Young's modulus. PEI concentrations of 3–6 wt% were used to spin-coat PEI/SLG films at precisely controlled thicknesses of ~200–1000 nm, which enabled the design of PEI/SLG thin films based on thickness control. The design of PEI/SLG film thickness afforded control over the volume fraction of SLG, which is related to the composite Young's modulus of the films via the well-known mixing rule. To validate this approach, we measured the composite Young's modulus of PEI/SLG films and modelled the relationship between modulus and film thickness (i.e., volume fraction) using the mixing rule. However, we found that linear regression analysis yielded an unexpectedly high effective Young's modulus of 1.12 ± 0.05 TPa for SLG. Further investigation revealed the larger-than-expected value was due to the gradual deterioration of mechanical mixing between SLG and PEI at film thicknesses > 250 nm. Overall, our results demonstrate that the control of mechanical mixing in PGL thin films is achievable through the physical design of film thickness, which fits well within the proposed framework for PGL development.
The fabrication of PGL materials is another important topic for controlling PGL properties. For example, the transfer process required for removing PGL thin films from a CVD substrate is known to introduce mechanical defects and electronic doping if improper processing conditions are used. However, little is known about the impact of thermal annealing on the properties of PGL materials. Normally, thermal annealing is thought to aid in the removal solvent and stress after polymer deposition on SLG, but we show that thermal annealing instead induces substantial structural damage and reduced film properties when poor conditions are used. Specifically, thermally annealing PEI/SLG in air past the Tg of PEI (~217 °C) caused widespread structural damage due to oxidation of the underlying Cu substrate. This conclusion was supported through an in-depth mechanistic investigation of annealing-induced deformation. First, changing the annealing atmosphere to high-purity nitrogen prevented widespread structural deformation from occurring during annealing, regardless of temperature. Second, the onset of film deformation during annealing in air was strongly associated with temperatures above the glass transition temperature of PEI. Finally, Arrhenius analysis yielded an activation energy of 159 kJ/mol for the deformation process, almost twice that associated with Cu oxidation and instead closer in scale to that of glass transitions in amorphous polymers. A physical failure mechanism was proposed based on the in-plane shrinkage of PEI during the glass-to-rubber transition caused by the release of internal stress induced by spin-coating. In-plane contraction of PEI would then cause compression of SLG as internal stress was released, which we confirmed from a significant blue-shift in the 2D band of SLG by ~30 cm-1 after annealing both with and without visible deformation. Importantly, we demonstrate that common secondary processing steps, like thermal annealing, will have critical effects on film properties if conditions are not properly controlled.
The mechanical fatigue and cycling stability of PGL thin films is another topic of interest for developing reliable PGLs with long operational lifetimes. Mechanical failure analysis might be used to evaluate failure mechanisms governing interfacial fatigue in PGL thin films. However, little work has been done understanding mechanical fatigue in PGLs. To this end, we explore the use of mechanical bulge testing for the evaluation of cycling fatigue in PGLs and construct a custom instrument, known as a bulge test apparatus (BTA), to perform fatigue measurements. In general, our BTA test platform provides a means of analyzing different fabrication/design conditions. To test its use, we prepared PEI/SLG thin films with different tensioning weights between 0 and 30 g. Then, the well-established methods for bulge testing were applied to the dynamic loading of PEI/SLG using the BTA. Specifically, the evolution of bulge-test-derived pre-stress in PEI/SLG was monitored as a function of cycle number and tensioning weight, which revealed large fluctuations in pre-stress with mechanical cycling up to ~200k cycles, which was unexpected for these films. To investigate the underlying mechanism, we further employed Raman spectroscopy, optical microscopy, and scanning electron microscopy (SEM) to determine the strain state of SLG before and after cycling and probe for structural changes. Raman measurements revealed that mechanical cycling induced a large redshift in the 2D and G peak positions of SLG by ~25.4 and ~10.1 cm-1, respectively, for 30 g-tensioned PEI/SLG, with similar shifts observed for 20 g-tensioned films. Optical and SEM images showed possible changes in the surface structure of SLG after cycling accompanying the shift in Raman characteristics. We discuss the possibility of interfacial failures involving in-plane slippage and out-of-plane buckling of SLG based on our results. If validated, the use of BTA may provide future insight regarding mechanical fatigue and failure at the PGL interface during dynamic loading. The practical relevance of methods for determining the influence of design and fabrication characteristics in PGLs will no doubt be invaluable for further development. Additional work in this area will be necessary to connect our analytical approach by BTA to underlying failure mechanisms in PGLs. / Doctor of Philosophy / Due to its record-breaking properties, graphene has tremendous promise for use in next-generation consumer electronics, like ultra-thin audio speakers and flexible displays. However, on its own, single-layer graphene (SLG) is not stable enough for practical uses. Therefore, in this dissertation, I construct a framework for developing polymer substrates to stabilize and enhance graphene based on the design and fabrication of polymer/graphene laminates (PGLs). To explore this framework, I design polyetherimide (PEI)/SLG thin films with controlled mechanical properties, evaluate fabrication-induced defects, and develop an analytical approach for measuring mechanical fatigue in these films.
The ability to precisely control thin film mechanics has important implications for the application of PGLs. However, it is challenging in PGL systems to enhance mechanical properties due to the limited amount of graphene that is used. Therefore, I show that the design of PEI/SLG film thickness can effectively control mechanical reinforcement, even at very low loadings of graphene. I further investigate the design of a controlled pre-tensioning in PEI/SLG and show that tensioning can be used to modify the mechanical response. However, using a custom mechanical testing platform, I also determine that mechanical fatigue may increase with pre-tensioning as well.
The impact of fabrication procedures on the properties of PGL thin films is another important aspect of PGL development that is often overlooked. Specifically, thermal annealing may introduce residual contamination and/or structural defects that reduce material properties. Therefore, I present a detailed study of thermal annealing-induced structural failures in PEI/SLG films, which shows that annealing at high temperature induces substrate oxidation and structure damage in the films. The results of this annealing study demonstrate the potential negative effects of fabrication on PGL development. Finally, this dissertation ends by discussing future directions in PGL design and fabrication that will need to be addressed in the coming years for further development of PGL thin film electronics.
|
1200 |
Thinnest uniform liquid films formed at the highest speeds with reverse roll coatingBenkreira, Hadj, Shibata, Yusuke, Ito, K. 11 March 2013 (has links)
No / Reverse roll coating is probably the most widely used coating operation, much less investigated than its counterpart and inherently unstable forward roll coating. A new data to complement earlier work which was limited to large gaps and thus “thick” films is presented. The intention is to assess the feasibility of reverse roll coating to yield very thin films (<10 μm) at high speeds (>1 m/s) for application in the newer technologies, such as the production of solar cells and plastic electronics. The data obtained demonstrate this is possible but at the lowest permissible gap (25–50 μm) with low-viscosity fluids (∼7 mPa s). The study also developed a new understanding of how instabilities are controlled. It was seen that the size of the inertia forces generated by the applicator roller in relation to surface tension, as expressed by the Weber number and not the applicator Capillary number (viscous forces/surface tension) which is the critical parameter.
|
Page generated in 0.1034 seconds