Spelling suggestions: "subject:"than"" "subject:"then""
1211 |
Transmorphic Nucleation of Solids in Liquid Thin FilmsShen, Bonan January 2024 (has links)
This dissertation focuses on identifying and analyzing the mechanism of solid nucleation in liquid thin films. In doing so, we identify and describe a previously unrecognized mechanism of nucleation in condensed systems referred to as transmorphic nucleation. This cluster-shape-change-based mechanism is revealed as a general heterogeneous nucleation mechanism applicable to discontinuous phase transformations occurring in continuous or pre-patterned thin films, as well as in numerous materials systems that possess morphologically and chemically non-trivial heterogeneous-nucleation-catalyzing interfaces (e.g., polycrystalline materials, embedded nano-crystals, and materials with structured interfaces).
Identifying, deciphering, and modeling the nature and details associated with how a new phase can nucleate in thin-film materials can be both scientifically meaningful for understanding discontinuous phase transformations in general, and technologically important for engineering various thin-film-based and nano-material-based applications and devices in particular. Classical nucleation theory (CNT) has long been established and regarded as the most practicable treatment that captures the thermodynamic and kinetic essence of the nucleation phenomenon in condensed systems in the simplest and most effective manner. Through a close examination of the theory, we identify and propose morphological equilibrium hypothesis (MEH) as an essential element of CNT. Our shape-transition-based model for transmorphic nucleation in thin films presented in this thesis illustrates that this hypothesis can be violated. As such, the CNT formulation is lacking in capturing the occurrence of the MEH-deviating shape evolution of the clusters, as for instance encountered during the process of transmorphic nucleation.
In this dissertation, we conceptually, theoretically, and numerically examine and analyze the kinetic pathway through which nucleation of solids takes place in encapsulated liquid thin films. This example was selected for investigation because it is a particularly simple system, which in turn permits one to make clear, definitive, and general conclusions. A new nucleation mechanism of transmorphic nucleation is discovered in the process. This mechanism is defined generally as the nucleation mechanism through which supercritical clusters are generated from subcritical clusters during an irreversible and morphological-equilibrium-deviating shape evolution initiated when the fluctuating embryos encounter a local growth-inducing element in the catalyzing interface. Both thermodynamic and kinetic analyses in accordance with our transmorphic nucleation mechanism are carried out using a novel adaptation of established theoretical formulations and numerical modeling methods. The kinetic pathway of transmorphic nucleation is described, and transmorphic nucleation temperature window is thermodynamically identified. The kinetic aspect of transmorphic nucleation in thin films is uniquely captured by keeping track of two coupled population distribution profiles of equilibrium-morphology-adhering cluster shapes.
Overall, the thesis starts with critical and deconstructive examination of CNT. It builds on our theory of phase initiation and evolution in condensed systems, i.e., Gibbs-Thomson variation (GTV) and Gibbs-Thomson function (GTF), and our interpretation of CNT to investigate steady-state and transient transmorphic nucleation in thin films. The thesis also examines and analyzes all other modes of shape-transition-affected nucleation in thin films outside the transmorphic nucleation domain to provide the comprehensive description of the entire map of nucleation mechanisms in thin-film systems. As far as the implications of the current work on the classical theory of nucleation is concerned, we illustrate how the phenomenon of transmorphic nucleation which violates MEH that forms the basis of CNT, reveals this previously unrecognized limitation of the current formulation of the classical theory of nucleation.
The results presented in this dissertation further show that the GTV-based approach, which we identify as the foundation upon which CNT is formulated, can address the MEH-violating shape evolution of subcritical to supercritical clusters. Moreover, the aforementioned reformulation of cluster evolution in this dissertation can be of value for understanding and manipulating phase initiation and evolution involving all of the three Gibbs-Thomson phenomena (i.e., nucleation, coexistence, and free growth) in small, controlled materials systems for optimizing various confined and interface-rich materials that are increasingly becoming technologically important.
|
1212 |
Thin-layer chromatography/matrix-assisted laser desorption/ionisation mass spectrometry and matrix-assisted laser desorption/ionisation mass spectrometry imaging for the analysis of phospholipids in LS174T colorectal adenocarcinoma xenografts treated with the vascular disrupting agent DMXAABatubara, A., Carolan, V.A., Loadman, Paul, Sutton, Chris W., Shnyder, Steven, Clench, M.R. 05 February 2015 (has links)
No / RATIONALE: 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a low molecular weight drug of the flavonoid group, which has an anti-vascular effect in tumours causing endothelial cell apoptosis and activation of cytokines. Flavonoid-based compounds have been reported to lead to an upregulation in the expression of lysophosphatidylcholines (LPC)-type lipids in solid tumours. A study employing TLC/MALDI-MS and MALDI-MS imaging to examine LS174T colorectal adenocarcinoma xenografts following administration of DMXAA has been conducted into this effect. METHODS: LS174T colorectal adenocarcinoma xenografts grown in male immune-deficient mice were treated with 27.5 mg/kg DMXAA. The control (before treatment) and 4 h and 24 h post-treatment tumours were excised and divided into two. MALDI-MS imaging experiments were carried out on 12 microm cryosections sections taken from one half of the tumours and from the other half the lipids were extracted and analysed by TLC/MALDI-MS. These experiments were carried out in triplicate. RESULTS: Statistical analysis of the MALDI-MS imaging data set indicated an increased amount of LPC in the 24 h post-treated sample and a decreased amount of PC in the 24 h post-treated sample, compared with the 4 h post-treated sample and the control. These effects were confirmed by the TLC/MALDI-MS data. The lipid extracts were separated into six spots on the TLC plate. These were identified as arising from different lipids classes, i.e. LPC, sphingomyelins (SM), phosphatidylcholines (PC) and phosphatidylethanolamines (PE). The TLC/MALDI-MS data indicated that LPC were highly expressed in the 4 h and 24 h post-treated tumour samples compared with the control. Examination of the mass spectrometric images confirms this increase and demonstrates additionally that the increase in the signals arising from LPC appears to be localised primarily within the central areas of the xenograft. CONCLUSIONS: An increase in expression of LPC lipids in solid tumours treated with DMXAA has been demonstrated and shown to be localised in the central area of the tumour.
|
1213 |
Second-Surface Mirror Effects in Thin-Film Absorber LayersDobarco-Otero, Jose 11 October 2000 (has links)
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been developing analytical and numerical heat transfer models for NASA's Langley Research Center for more than 25 years. Recent versions of these models are being used in the design of the next-generation thermal radiation detectors intended for Earth radiation budget campaigns. The current investigation presents three models for the absorption of electromagnetic radiation in thin films. The first assumes a surface heating boundary condition. The second model, derived from electromagnetic theory, is an analytical volumetric heat generation model. This model can be applied to a semi-infinite medium or to a thin-film absorber layers behaving as a second-surface mirror; that is, a semi-transparent coating deposited on top of a reflective surface. The third model is a statistical volumetric heat generation model that is derived using the Monte Carlo ray-trace (MCRT) method. These models are compared by using them to predict the transient temperature response of a generic thermal radiation detector. Results are presented for absorber layers in which the index of refraction is equal to the extinction coefficient. It was found that both of the volumetric heat generation models produce identical results. It was also found that the response of the detector due to shorter wavelengths deviates less from the surface absorption model than at longer wavelengths. A second-surface mirror reflection model for the absorber layer of the thermal radiation detector is also presented in this thesis. / Master of Science
|
1214 |
Preparation and characterization of lead lanthanum titanate thin films by metalorganic decompositionKhan, Ashraf Reza 18 April 2009 (has links)
There is a critical need for materials with very high dielectric constant to be integrated in the next generation of 64- and 256-Mb ULSI DRAMs. Materials in the Pb-based perovskite family have high relative permittivities and have consequently attracted a world wide attention. Cubic Lead Lanthanum Titanate (PLT) is one of the prime candidates in this respect and its structure and properties in the thin film form were investigated in the present study, for potential application in the ULSI DRAMs.
Thin films of Lead Lanthanum Titanate corresponding to 28 atomic percentage of lanthanum were prepared by metalorganic decomposition (MOD) process. Solutions were prepared from lead acetate, lanthanum acetate and titanium iso-propoxide and thin films were then spin-coated from these solutions on PtlTilSi0₂/Si and sapphire substrates. The films were fabricated from two solutions of different compositions. The composition of the first solution was determined assuming that the incorporation of La<sup>3+</sup> in the PbTi0₃ structure gives rise to A-site or Pb vacancies whereas for the composition of the other solution the creation of B-site or Ti vacancies was assumed. The effect of excess lead on the structure and the properties was also studied for 0% to 20% of excess PbO. The x-ray diffraction patterns of all films at room temperature indicated a cubic structure with lattice constant of 3.92 A. Optical and electrical measurements showed that the films made assuming B-site vacancies had better properties. In general, excess PbO was found to improve the optical as well as the electrical properties of films. However, in films with Bsite vacancies this improvement occurred only up to 5-10% of excess PbO, while higher PbO additions had a deleterious effect. The films had high resistivity, good relative permittivity, low loss, very low leakage current density, and high charge storage density. A type-B film with 10 % excess Pb had a permittivity of 1336 at 100 kHz. It also had a charge storage density at room temperature of around 16.1 μC/cm² at a field of 200 kV/cm and no sign of polarization loss or breakdown was observed up to 10<sup>10</sup> cycles under the accelerated degradation breakdown test. / Master of Science
|
1215 |
Deposition and Characterization of Thin Metal Oxide Heterostructures for Electronic and Magnetic Device ApplicationsLadewig, Chad Samuel 05 1900 (has links)
The first study investigated the deposition and characterization of the CoO and Co3O4 phases of cobalt oxide. It was determined that both phases can be easily distinguishable by XPS, LEED and EELS and grown by only altering the oxygen partial pressure during MBE deposition. This fundamental knowledge gives a foundation for further experiments involving graphene growth on cobalt oxides. The second study focused on the layer-by-layer growth of graphene on another metal oxide, MgO. Past research gives promise of favorable interfacial interactions at the graphene/MgO interface though the exact growth mechanism is unknown. Layer by layer growth by MBE resulted in the characterization of a complex graphene oxide/buckled graphene/ graphene heterostructure confirmed by XPS, AES, LEED and EELS and supported by DFT calculations performed by the project's collaborators at the California Institute of Technology. This detailed look into graphene growth give valuable information that can be allied to graphene growth on similar oxide surfaces. The last project deviates from graphene-based studies and instead focused on interfacial interactions between two metal oxides, chrome oxide and titanium oxide. A corundum phase TiO2-x film was grown on Al2O3 via MBE and characterized using XPS, AES, LEED, and EELS. Data taken gives evidence of the presence of a two-dimensional election gas at the TiO2-x surface because of oxygen vacancies present after deposition. Deposition of chrome in UHV results in the formation of an oxidized chrome overlayer by abstraction of oxygen from the TiO2-x underlayer increasing the number of vacancies present. MOKE measurements taken by the project's collaborators at the University of Nebraska-Lincoln indicate that there is an interfacial exchange bias at the interface of the two oxides, a favorable property for magnetic device applications.
|
1216 |
SYNTHESIS AND DEVICE CHARACTERIZATION OF FUNCTIONALIZED PENTACENES AND ANTHRADITHIOPHENESSubramanian, Sankar 01 January 2008 (has links)
Research on pi-conjugated organic materials in the recent past has produced enormous developments in the field of organic electronics and it is mainly due to their applications in electronic devices such as organic field effect transistors (OFETs), organic light emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). The primary goal of this research work is to design and synthesize high performing charge transport organic semiconductors. One of the criteria for better performance of the organic thin film transistor (OTFT) is to have high uniform thin film morphology of the organic semiconductor layer on the substrate. The first project in this dissertation has been directed towards improving the thin film morphology of the functionalized pentacenes through liquid crystalline behaviour. The results have suggested the possibility of thermotropic liquid crystalline phases in 6,13-bis(diisopropylhexylsilylethynyl) pentacene which has no pi-stacking in its solid state and the presence of silyl group at the peri-position is crucial for the stability of the functionalized pentacenes. In the second project, i have investigated the effect of alkyl groups with varying chain length on the anthradithiophene chromophore on the performance of the charge transporting devices. Organic blend cell based on solution processable 2,8-diethyl-5,12-bis(triethylsilylethynyl) anthradithiophene has showed 1% power conversion efficiency and the performance is mainly attributed to the large crystalline phase segregation of the functionalized anthradithiophene from the amorphous soluble fullerene derivative matrix. OTFT study on alkyl substituted functionalized anthradithiophenes suggested the need of delegate balance between thin film morphology and the crystal packing. Third project has been directed towards synthesizing halogen substituted functionalized anthradithiophenes and their influence in the performance of OFETs. OTFT made of 2,8-difluoro-5,12-bis(triethylsilylethynyl) anthradithiophene produced devices with thin film hole mobilities greater than 1 cm2/Vs. The result suggested that the device is not contact limited rather this high performance OTFTs are due to the contact induced crystallinity of the organic semiconductor.
|
1217 |
Microstructure effects on light propagation in zinc-sulfide thin film waveguides.Himel, Marc David. January 1988 (has links)
The optical propagation losses resulting from the internal microstructure of ZnS thin films were investigated using a wavelength technique. Waveguide losses were determined by measuring the scattered light as a function of propagation distance along the film. Accurate measurements were obtained by using a technique we developed that employees a coherent fiber bundle to transfer the scattered light streak to a remote image plane that was scanned with an apertured photomultiplier tube. Microstructure effects on losses were found to dominate effects caused by substrate surface finish. The magnitude of the loss was found to depend upon two independent parameters: the average grain size of the polycrystalline films and the refractive index difference between ZnS and the interstitial material. Increasing the H₂O partial pressure led to lower losses as a result of reduced crystallite size, and a change in preferential crystallite orientation. A similar change in orientation was observed for films deposited onto heated substrates. Increasing the O₂ partial pressure during deposition also resulted in slightly lower waveguide losses, possibly as a result of void filling with ZnO. The modal dependence of the losses for ZnS films deposited at ambient temperature suggests that volume losses dominate surface losses for the lowest order mode while the ratio of surface to volume losses increases for higher order modes. By depositing ZnS onto substrates cooled with liquid nitrogen, adatom surface mobility was reduced which resulted in amorphous films. Losses were minimized (≤0.5 dB/cm at λ = 633 nm) for a substrate temperature of -50°C. These losses are lower than any previously reported for ZnS. However, further reduction of the substrate temperature resulted in an increase in tensile stress which eventually led to higher waveguide losses and crazing. The films deposited onto cooled substrates exhibited a low refractive index which indicates a low packing density and increased porosity. Differential water desorption, which is further evidence of increased porosity, was most noticeable in films with lower refractive indices when nonlinear prism coupling was attempted.
|
1218 |
The Effect of Average Grain Size on Polycrystalline Diamond FilmsAbbott, Patrick Roland 05 1900 (has links)
The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
|
1219 |
Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin FilmsPuthucode Balakrishnan, Anantharamakrishnan 05 1900 (has links)
While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
|
1220 |
Fibonacciho haldy - jejich varianty a alternativní datové struktury / Fibonacci heaps - their variations and alternative data structuresMelka, Jakub January 2012 (has links)
In this paper we explore Fibonacci heaps and their variants. The alternative versions of the Fibonacci heap, the thin and thick heaps, were introduced by H. Kaplan and R. E. Tarjan in 2008. We compare these heaps from both experimental and theoretical point of view and we also include some classic types of heaps, namely regular and pairing heap. In our experiments we will be most interested in the total time required to run an algorithm that works with heap. The results show that thin and thick heaps are usually faster than the Fibonacci heap and slower than the regular heap. In conclusion, we summarize the knowledge gained from experiments.
|
Page generated in 0.051 seconds