• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2812
  • 667
  • 451
  • 412
  • 173
  • 116
  • 88
  • 69
  • 66
  • 23
  • 19
  • 19
  • 19
  • 19
  • 19
  • Tagged with
  • 5948
  • 3462
  • 1763
  • 663
  • 546
  • 521
  • 520
  • 506
  • 471
  • 383
  • 381
  • 375
  • 374
  • 351
  • 344
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

Growth mechanism of YBa2Cu3O7-y thin films on the metallic tapes by MOCVD

Yoshida, Y., Hirabayashi, I., Kurosaki, H., Akata, H., Higashiyama, K., Takai, Y. 03 1900 (has links)
No description available.
822

Orientation mechanism of REBa/sub 2/Cu/sub 3/O/sub y/ (RE = Nd, Sm, Gd, Y, Yb) thin films prepared by pulsed laser deposition

Ichino, Yusuke, Sudoh, Kimihiko, Miyachi, Koji, Yoshida, Yutaka, Takai, Yoshiaki, 一野, 祐亮, 吉田, 隆 06 1900 (has links)
No description available.
823

Photoinduced dichroism in amorphous As2Se3 thin film

DeForrest, Dan 20 December 2005 (has links)
The dichroism in amorphous As2Se3 induced by a polarized beam of near band-gap light (λ = 632.8 nm) was measured in films that ranged in thickness from 0.25 µm to 1.93 µm. Most noncrystalline materials are initially isotropic and homogeneous. When amorphous As2Se3 (a chalcogenide glass) absorbs an intense pump-beam of polarized light, the absorption coefficient for light polarized in the same direction as the pump-beam is less than for the perpendicular polarization, i.e. the sample becomes anisotropic (dichroic). The induced dichroism is reversible by rotating the polarization of the pump light by 90°. Induced dichroism is potentially useful in various photonic devices including optical switches, optical memory, and photowritable polarizers.<p>Several aspects of photoinduced anisotropy in a-As2Se3 have been analyzed:<p>(i) rate of photoinduced anisotropy buildup as a function of inducing beam intensity and sample thickness, <p>(ii) the kinetics of the photoinduced anisotropy buildup in terms of a stretched exponential curve, <p>(iii) the stretched exponent, β, as a function of inducing beam intensity and sample thickness, <p>(iv) reversibility of the photoinduced anisotropy, (v) saturation level of photoinduced anisotropy as a function of inducing beam intensity and sample thickness.<p>The anisotropy buildup kinetics has been found to follow a stretched exponential behavior and that there exists an inverse relationship between the pump intensity and the time constant, τ. The τ(I) vs intensity (I) relationship more closely follows a logistic dose response curve than a simple straight line or power law relationship. There exists a direct relationship between the time contact  and the sample thickness, where a longer anisotropy buildup time is required as the sample thickness increases. The stretched exponent, β, was found to be approximately 0.6 and has a slight dependence on the inducing light intensity. The correlation of the stretching exponent, β, to sample thickness, L, was found to have a weak inverse relationship, that is β tends to decrease as the sample thickness increases.<p>The findings in this work demonstrate that the anisotropy orientation could be changed indefinitely since it was found that even after 100 orientation changes the anisotropy saturation had no measurable fatiguing. The anisotropy saturation level was found to be independent of the inducing beam intensity and linearly proportional to the sample thickness.
824

Low cost fabrication techniques for embedded resistors on flexible organics at millimeter wave frequencies

Horst, Stephen Jonathan 21 November 2006 (has links)
This research presents an analysis of low cost fabrication techniques for embedded thin film resistors suitable for large volume needs. High frequency applications are targeted from 2 to 40GHz. Two approaches are taken. The first utilizes commercially available foils to produce resistors using only thermocompression bonding and wet chemical etching. The second method utilizes electroless plating with a modified plasma treatment to promote adhesion to organic materials. This process uses only chemical baths to form the thin films. Several RF and millimeter wave applications using these processes have been explored including terminations and attenuators. Accurate simulations of resistor performance were obtained using impedance boundaries in conjunction with the finite element method. Resistors created using the foil transfer process are measured to be accurate within 5% of these simulated values. Electroless values are currently accurate to around 40%, with research underway expected to improve this to around 10%.
825

Sol-gel processing of barium cerate-based electrolyte films on porous substrates

Agarwal, Vishal 12 1900 (has links)
No description available.
826

Low Temperature Preparation and Optoelectronic Properties of ZnO and ITO Transparent Conducting Thin Films

Shen, Jung-hsiung 05 March 2010 (has links)
The purposes of this thesis are to prepare ZnO and tin-doped In2O3 (ITO) films at low temperature and study their microstructure and optoelectronic properties. Low-temperature growth of undoped ZnO films with high transparency and low electrical resistance was prepared by ion beam sputtering. After systematic testing, a sheet resistivity as low as 2.95 x 10-3 £[-cm was obtained at a substrate temperature of 150 oC, ion source voltage of 850 V, and ion beam current of 30 mA. The transmittance of the ZnO films was in the range of 85-90%. Hall measurements showed that a high mobility of 21.41 cm2/Vs was obtained for films less than 200 nm thick. The related microstructures and physical properties were measured and discussed. ZnO nanofilm of (2-1-10) and (01-11) surfaces were prepared on NaCl (001) surface at 200 oC and 400 oC to produce nearly pure (2-1-10) and (01-11) textures respectively and the orientation relationships were determined and the interface discussed. By dissolving the NaCl substrate, the ZnO (2-1-10) and (01-11) surfaces several cm2 in area, which may have some useful applications, can be easily prepared. The photoluminescence spectrum from the (2-1-10) surface showed only a near-band-edge UV emission peak while the (01-11) surface showed a near band-edge UV emission and a broad green emission. Low-temperature preparation of transparent conducting electrode is essential for flexible optoelectronic devices. ITO films of high transparency and low electrical resistance were prepared at room temperature with a radio-frequency ion beam sputtering system. Specimens with a low sheet resistivity of 10-4 £[-cm and a high visible-light transmittance of 85-90% were obtained. Hall measurement was used to measure the mobility and carrier concentrations and the effects on resistivity were discussed. ITO films were deposited on glass substrates at 200 oC at various oxygen flow rates. At low oxygen flow rate the film surface has ITO whiskers with metallic In tips and a crystallographic relationship of (010)In//(110)ITO and (001)In//(001)ITO is present between them. The In tips act as the seeds for the growth of ITO whiskers by a vapor-liquid-solid growth mechanism. As the oxygen flow rate increases, the crystallinity of the ITO film decreases till an amorphous phase is formed. The microstructure, resistivity and transmittance of the films were studied as a function of oxygen flow rate. Thin films of high transmittance (~90%) and low resistivity (6 x 10-4 Ω-cm) were prepared at an intermediate oxygen flow rates.
827

Deep chemical etching on quartz substrates and integrated passive devices

Huang, Chuan-Yi 29 July 2010 (has links)
The purpose of the thesis is to investigate and the corrosion resistance of the masking materials on quartz substrates in deep chemical etching using NH4HF2 solutions. Masking materials, including Cr/Au, PLA-900 position photoresist, and NPR-2500F negative photoresist were used for test. In the deep etching of the quartz substrates, we observed changes of adhesion of the masking materials. The process parameters obtained from deep etching were used to fabricate quartz resonators. Before etch, the etch masks using Cr/Au thin films were deposited on both sides of the quartz substrates. Cr/Au masking materials were stripped after the etching, and Cr/Au electrodes were deposited by sputtering on both sides of quartz substrates. Finally, the quartz resonators were obtained by dicing. Passive devices, including capacitors and inductors were also fabricated and measured for integrated passive devices, such as band-pass filters.
828

Deformation Mechanism of Amorphous/nanocrystalline Multilayer Thin Films on Polyimide Substrates

Huang, Han-shen 05 September 2011 (has links)
The tensile behavior of the monolithic amorphous ZrCu and crystalline Cu thin films and the ZrCu/Cu multilayered thin films, coated on polyimide (PI) substrates in different layer thicknesses has been investigated. The scanning electron microscope (SEM) morphology of the as-deposited thin film is composed of sphere domains. Between the domains, stress concentration is induced. The cracks perpendicular to the loading direction would propagate along the domains. The constituent component examined by energy dispersive X-ray spectrometer (EDS) shows that the average composition (in atomic percent) amorphous thin film is Zr46.78Cu53.22, closed to the designed Zr50Cu50 goal. The X-ray diffraction (XRD) results show that the multilayered specimens are composed of both amorphous ZrCu and nanocrystalline Cu crystal structure. As the monolayer thickness become lower, the normalized peak height and grain sizes of Cu become lower. To obtain the mechanical properties of the coated films, deducting the contribution of substrates is used in this study. The tensile Young¡¦s moduli of monolithic amorphous ZrCu and nanocrystalline Cu thin films are close to the results extracted from micro-compression. Based on the current tensile results for the moduli of multilayered thin films, the obtained mechanical data are demonstrated to be reliable and are consistent with the theoretical values predicted by Rule of Mixture. As the thickness decreases from 100 nm down to 10 nm, the tensile Young¡¦s moduli do not vary much. On the other hand, the maximum tensile stress shows strong variation, being highest for the layer thickness of 25 nm. The deformed surface morphologies characterized by scanning electron microscopy also exhibit a similar trend. The optimum tensile properties of the monolithic and multilayered thin film combinations are examined and discussed in this thesis.
829

Characterization of Selenized CIGS Thin Films

Li, Kuan-Hsien 25 July 2012 (has links)
Low-cost and high-efficiency are of continuous interest for the fabrication of solar cells. I-III-VI compound semiconductors Cu(In,Ga)Se2 (CIGS) are the most important absorber materials in developing thin film solar cells. The bandgap of CIGS varies from about 1.1 to 1.7 eV, which is within the maximum solar absorption region. This is very important for the optimum conversion efficiency. The extraordinarily high absorption coefficient from direct bandgap leads to thinner thickness and lower fabrication cost for its use in thin film solar cells. In this experiment, we deposit CuInGa alloy layer on Mo-coated soda-lime glass by RF sputtering and then use selenization process to form Cu(In,Ga)Se2. We study the characterization of sputtered CIG alloy layer and selenized CIGS thin film.
830

Photoluminescence of Stereoregular Polymers

Li, Chung-li 06 August 2012 (has links)
A series of stereoregular polymers including atactic, syndiotactic and isotactic poly 4(N, N-diphenyl)styrene (PNNDPS) and poly 4(N, N-ethylphenyl)styrene (PNNEPS) were synthesized to exam the tacticity effect on the photoluminescence (PL) behavior. Also, different degrees of the regularity as well as the chemical modification of the fluorophor were explored in the stereoregular polymers. Because of the increase of the steric hindrance among the bulky triphenylamine pendants in the polymer chains, a red shift of the PL emission with an accompanying increase in the emissive intensity was found in contrast to the weakened emission of triphenylamine monomers. In solution state, the PL spectra of these stereoregular polymers reveal multiple PL emissive bands including monomeric and aggregation emissions as evidenced by the time-resolved lifetime measurement. Because of the huge triphenylamine pendants, the triphenylamine pendants attached on the iPNNDPS17 (mmmmmm~50%) might encounter higher steric hindrance than that in the sPNNDPS23 (rrrrrr~59%) due to the stereoregularity evidenced by simulation. Accordingly, the iPNNDPS17 (mmmmmm~50%) exhibits more emissive intensity than the sPNNDPS23 (rrrrrr~59%) due to the effective blockage of the intramolecular rotation of the phenyl blade i.e., the restriction of intramolecular rotation (RIR). Accordingly, the RIR-active PNNDPS is highly sensitive to the temperature variations. The chemical modification of the fluorophor was carried out to examine the effect of the chemical structure. By comparison, the sPNNDPS2 (rrrrrr~70%) with high regularity exhibits much higher emissive intensity than the sPNNDPS23 (rrrrrr~59%) with low regularity due to the less solubility. However, more intense PL emission can be found in the sPNNEPS17 than aPNNEPS8 due to the ethyl substitution of the fluorophor. In aggregation solution, with the increase of the poor water contents, the PL emission decreases significantly in the sPNNDPS23 (rrrrrr~59%) and sPNNDPS2 (rrrrrr~70%) due to the formation of H-aggregate in which extra energetic loss is conducted. By contrast, the PL spectra display that the emissive intensity decreases first as fw=0.1~0.5 and then intensifies later as fw=0.6~0.9. This might be resulted from the competition between the £k-£k interaction and RIR effect. Interestingly, the PL emissive intensity drops down significantly in the sPNNEPS, whereas the PL emissive intensity is almost unchanged in the aPNNEPS8 with the increase of the poor water contents. We suggest that because the aPNNEPS8 might contain both syndiotactic and isotactic configurations, the isotactic configurations having the ethyl group pointing out of the plane may prevent the formation of the £k-stacking between the fluorophors. The PL behavior in thin film is also explored for these stereoregular polymers. After slow cooling from melt, the crystalline sPNNDPS2 (rrrrrr~70%) thin film exhibits very strong emission in comparison with the thin film after quenching from melt, indicating the crystallization-induced emission enhancement. Although the iPNNDPS17 (mmmmmm~50%) is noncrystallizable as evidenced by differential scanning calorimetry (DSC) and polarized light microscope (PLM), the PL emissive intensity of the iPNNDPS17 (mmmmmm~50%) thin film is significantly stronger after slow cooling from melt than that after quenching from melt. We suggest that this might be attributed to the free volume effect varied with the thermal history associated with the steric hindrance. Notably, this enhanced PL emission in the iPNNDPS17 (mmmmmm~50%) thin film is extremely larger than that in the sPNNDPS23 (rrrrrr~59%) and aPNNDPS8, indicating the stereoregularity effect associated with the RIR effect. By contrast, this free volume effect is not significant in the PNNEPS thin film due to the flexible ethyl substitutions. As a result, the stereoregular polymers with different tacticities and regularities indeed exhibit distinct PL behavior in solution and thin film.

Page generated in 0.0694 seconds