• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2812
  • 667
  • 451
  • 412
  • 173
  • 116
  • 88
  • 69
  • 66
  • 23
  • 19
  • 19
  • 19
  • 19
  • 19
  • Tagged with
  • 5948
  • 3462
  • 1763
  • 663
  • 546
  • 521
  • 520
  • 506
  • 471
  • 383
  • 381
  • 375
  • 374
  • 351
  • 344
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
851

A Study on the Residual Stress Distributions during Thin Films Sputtering Process

Hunag, Tian-yong 21 July 2008 (has links)
In this thesis, the residual stress distribution of metal film sputtered on silicon substrate are studied. The commercial Marc finite element method package is used in this work. The thermal-mechanical model is employed in the residual and thermal stress analysis of thin film during the sputtering process. Two models finite element are used in this study. One is the 2D axial-symmetric model and the other is the 3D. The 2D axial-symmetric model was employed to investigation the residual stress distribution in 4¡¨, 6¡¦¡¦, and 8¡¦¡¦ wafer during the UBM sputtering process. The 3D model was used to study the effects of sputtering parameters, i.e. sputtering temperature and film thickness, on the residual stress distribution. The effect of etching process on the sputtered film has also been studied by using the 3D model. Results indicate the proposed model can simulate the residual stress distribution successfully.
852

The Fabrication of Thin Film Bulk Acoustic Wave Filters Using ZnO Piezoelectric Thin Films

Tsai, Tzung-ru 15 August 2008 (has links)
Thin Film bulk acoustic wave devices have the advantages of low loss, low temperature coefficient of the resonant frequency, and high power handling. These excellent characteristics are suitable for the applications on high frequency communication systems. In this study, thin film bulk acoustic wave filters using the ladder-type filter and stacked crystal filter configurations were investigated. Platinum was chosen as the top and bottom electrodes. To improve the platinum adhesion on SiNx/SiO2/Si substrates, a seeding layer of titanium is used. Highly c-axis oriented piezoelectric zinc oxide thin films were deposited by two-step deposition method under room temperature. As resonant area decreases, the band rejection of ladder-type filter will increase. Because the resonant area decreased, the distance between signal and ground will increase the results in an increased insertion loss. On the other hand, stacked crystal filters have larger band rejection and less 3dB bandwidth, which are suitable for the application of narrow band filters.
853

Fabrication of Flexible Thin Film CuInSe2 Solar Cell

Hsu, Pin-hung 19 August 2008 (has links)
In this research, CuInSe2 thin film is grown at 350¢J low temperature by photo-assisted co-evaporation system to fabricate PI (polyimide) substrate flexible thin film solar cells. The low temperature growing CuInSe2 is analyzed by raman spectroscopy. Besides, sputtering Mo thin film on PI and CIS/Mo/PI contact properties are also researched for device fabrication. By studying the Ar pressure and Mo internal stress relationship during the deposition, the Mo layer has been fabricated with both low resistivity and good adhesion. The sheet resistance of Mo layer is 1.95 £[/¡¼ and shows ohmic contact with CuInSe2 at temperature below 350¢J. Raman spectroscopy shows that photo-assisted CuInSe2 has stronger and thinner A1 peak than which without light. Two-stage growing can help eliminating Cu2Se and background signals further. CA structure vibration modes are involved in the asymmetric A1 peak broadening. The SLG/Mo/CIS/CdS/ZnO:Al/Al structured device has open voltage, Voc = 0.320 V, short cut current, Isc = 3.61 mA, and solar cell fill factor, FF = 49.8 %. On the other hand, PI/Mo/CIS/CdS/ZnO:Al/Al structured device has open voltage, Voc = 0.318 V, short cut current, Isc = 2.71 mA, and solar cell fill factor, FF = 39.0 %¡C
854

Fabrication of BaNd2Ti5O14 Thin Film Capacitors by RF Magnetron Sputtering

Lu, Yung-wei 17 August 2009 (has links)
The motivation of this study is based on integrated passive filter dielectric thin films with thin layers. Reducing the area of integrated passive filter in a circuit by enhancing dielectric constant with same capacitance and thickness is the purpose which has been expected. To fabricate the thin film MIM structure capacitors, RF magnetron sputtering method was selected and BaNd2Ti5O14 composed materials treated as the target to grow the thin film dielectric layer in MIM structure capacitors. In this study the MIM structure capacitors were deposited on alumina substrates with Pt electrodes. In the thin film experiments, various operation parameters of sputtering deposition and post thermal process at different temperature were used to perform the desired thin film dielectric layers. In order to obtain the optimal performance of the dielectric thin films, ¡§Taguchi Method¡¨ was used as a experimental tool. The primary investigation focused on the electric characteristics of the thin film capacitors in this article. In the arranged ranges of the parameters, the optimal dielectric thin films were deposited under RF power 100W with deposition temperatures at 400¢J, chamber pressure is 10mtorr. The dielectric constant of deposited thin films is 39.2 at 1MHz, the dissipation factor is 1.38¢H at 10kHz, leakage current is 2.61X10-7A/cm2 at 5V operating voltage and breakdown electric field of 0.29MV/cm is observed. The crystalline structures of deposited thin films were characterized by XRD and found amorphous structure. Film roughness was measured by Atomic Force Microscope (AFM) with 0.263 nm.
855

Linear and nonlinear optical properties of metal-dielectric multilayer structures

Owens, Daniel Thomas 01 September 2010 (has links)
The object of the present research is to design and fabricate metal-dielectric thin film multilayer structures that make use of the nonlinear optical (NLO) response of Ag for efficient nonlinear absorption for sensor protection. These structures employ structural resonances to overcome the challenges of reflection and absorption that limit access to this large NLO response. The research consists of three parts: first, we present a comprehensive analysis of the contributions to the nonlinear optical response of Ag. Second, we present a systematic investigation of the linear optical properties of Metal-Dielectric Photonic Band-Gap (MDPBG) structures, including optimization of the structure for a particular transmittance spectrum. Third, we study the linear and nonlinear optical properties of Induced Transmission Filters (ITFs). Each of these parts includes experimental results backed by modeling and simulation.
856

Property Modulation Of Zinc Oxide Through Doping

Kekuda, Dhananjaya 03 1900 (has links)
Semi conductors are of technological importance and attracted many of the re-searchers. ZnO belongs to the family of II-VI semiconductors and has material properties well suitable to UV light emitters, varistors, Schottky diodes, gas sensors, spintronics, ferroelectric devices and thin film transistors. It has been considered as a competitor to GaN, which belongs to the family of III-V semiconductors. This is due to the fact that ZnO of high quality can be deposited at lower growth temperatures than GaN, leading to the possibility of transparent junctions on less expensive substrates such as glass. This will lead to low-cost UV lasers with important applications in high-density data storage systems etc. One of the most popular growth techniques of ZnO is physical sputtering. As compared to sol-gel and chemical-vapor deposition, the magnetron sputtering is a preferred method because of its simplicity and low operating temperatures. Hence, detailed investigations were carried out on undoped and doped ZnO thin films primarily deposited by magnetron sputtering. The obtained results in the present work are presented in the form of a thesis. Chapter 1: A brief discussion on the crystal structure of ZnO material and its possible applications in the different areas such as Schottky diodes, spintronics, ferroelectric devices and thin film transistors are presented. Chapter 2: This chapter deals with various deposition techniques used in the present study. It includes the magnetron sputtering, thermal oxidation, pulsed-laser ablation and sol-gel technique. The experimental set up details and the deposition procedures are described in detail i.e., the deposition principle and the parameters that will affect the film properties. A brief note on the structural characterization equipments namely, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and the optical characterization equipments namely, transmission spectroscopy is presented. The transport properties of the films were studied which include Dielectric studies, impedance studies, device characterization and are discussed. Chapter 3: The optimization of ZnO thin films for Schottky diode formation and The characterization of various Schottky diodes is presented in this chapter. P-type conductivity in ZnO was implemented by the variation of partial pressure of oxygen during the sputtering and are discussed. A method to achieve low series resistance hetero-junction was achieved using thermal oxidation method and the detailed transport properties were studied. The optical investigation carried out on the ZnO thin films under various growth conditions are also presented. Chapter 4: This chapter deals with the processing, structural, electrical, optical and magnetic properties of Mn doped ZnO thin films grown by pulsed laser ablation. Structural investigations have shown that the Mn incorporation increases the c-axis length due to the relatively larger ionic size of the Mn ions. Studies conducted both at low and high concentration region of Zn1¡xMnxO thin films showed that the films are anti-ferromagnetic in nature. The transport measurements revealed that the electrical conductivity is dominated by the presence of shallow traps. Optical investigations suggested the absence of midgap absorption and confirm the uniform distribution of Mn in wurtzite structure. Chapter 5: Carrier induced ferromagnetism in Co doped ZnO thin films were studied and the results are presented in this chapter. High density targets were prepared by solid state reaction process and the thin films were deposited by pulsed laser ablation technique. Two compositions were studied and it was found that with increase in substrate temperature, c-axis length decreases. Optical studies suggested a strong mid gap absorption around 2eV and could be attributed to the d-d transitions of tetrahedral coordinated Co2+. The presence of ferromagnetism in these films makes them potential candidates for spintronics applications. Chapter 6: It has been reported in literature that o®-centered polarization will drive ferroelectric phase transition. Motivated by such results, substitution of Lithium in ZnO was studied in detail. The structural and electrical properties were investigated over a wide range of composition (0-25%). The ferroelectric studies were carried out both in metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) configuration and are presented in this chapter. The appearance of Ferro electricity in these films makes them potential candidates for ferroelectric memory devices. Chapter 7: This chapter describes the studies conducted on Mg doped ZnO Thin films grown by multi-magnetron sputtering. The hexagonal phases of the films were evaluated. All the films exhibited c-axis preferred orientation towards (002) orientation. Micro structural evolutions of the films were carried out through scanning electron microscopy and atomic force microscopy. Ferroelectric properties were investigated in both metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) configurations. It was observed that the Mg concentration increases the band gap and the details on optical investigations are also presented in this chapter. Chapter 8: ZnO based thin film transistors have been fabricated and characterized using ZnO as active channel layer and Mg doped ZnO as dielectric layer. Excellent leakage properties of the gate dielectric were studied and presented in this chapter. These studies demonstrated that Mg doped ZnO thin films are suitable candidates for gate dielectric applications. Conclusions: This section presents the conclusions derived out of the present work. It also includes a few suggestions on future work on this material.
857

On Modeling Of Constrained Piezoelectric Thin Films For Structural Health Monitoring

Ali, Rizwaan 01 1900 (has links)
The behaviour of a free-standing thin film differs from that of a film surface-bonded or embedded due to the boundary constraints. A general dearth of analytical models, in regard to prediction of the operational competence of a constrained Piezoelectric thin film, prevails. In conventional design of miniaturized thin film devices, several non classical effects, for instance the effect of boundary constraints, are not considered. To warrant the design and performance optimisation of thin film sensors, such effect must be taken into account in a forethoughtful manner. This thesis is an attempt to achieve such optimisation through modeling of thin films. The coupled problem of a film on a substrate is solved semi-analytically in theoretical cases; and by finite element analysis in realistic cases for damage identification in the host structure. We first propose a two-dimensional analytical model of a constrained Piezoelectric thin film embedded in a host. Analytical expressions of capacitance and voltage across the electrodes are obtained by assuming first order shear deformation across the film thickness. The bonding layer between the film and the substrate, which is assumed to be an equivalent single layer including electrodes, insulation layer, adhesive layer etc., is modeled by taking into account its viscoelastic property. Residual stress is incorporated in the constitutive model through equivalent residual strain. Simulations on 10 m thick PVDF and 100 mPZT films are conducted. They illustrate the dependence of voltage response and capacitance on the applied stress, as well as on the residual stress. A maximum percentage variation in capacitance, as compared to the conventional estimate, is about 2% in a PVDF film and +75% to-65% in a PZT film for various combinations of tensile stresses applied at the ends of the film. Effect of residual stress is also exemplified via comparative response of a 1 m PZT film deposited on Pt/Ti/Si(0 0 1), with and without residual stress. For this case, an almost +50% increase in the voltage and an equivalent drop in the capacitance is observed. Next, we look into the voltage response profile of this model by employing it as a sensor to identify a finite mode I and mode II sub-surface cracks in a finite size host. To model the embedded crack, additional perturbation functions in the displacement field due to linear elastic crack tips in an infinite solid under plane strain condition are introduced to accommodate the stress free conditions at its surfaces. The film model requires the interfacial displacement and traction conditions, which are obtained from the analysis of the host. The combined analysis of the film and crack models brings forth the voltage gradient along the film span as a direct indicator of the location of crack in the axial direction, whereas the voltage magnitude represents the size of the crack. Following this analysis, a quasi three-dimensional(3-D) model of a Piezoelectric thin film surface-bonded to the host structure is proposed. With due consideration of restriction on the thickness of the film, here the model is based on a reduced 3-D continuum mechanics approach. The displacement field in the film is assumed to vary according to the third-order shear deformation theory; and the electrical and mechanical boundary conditions on the surfaces of the film are accommodated in a consistent manner. The formulation yields a governing inhomogeneous system of second-order Partial Differential Equations(PDEs), which is dependent on the displacement field at the film-host interface through force terms. Semi-analytical expressions of potential difference and capacitance are obtained. This system is solved numerically for two unknown rotations about X and Y axes of the film by finite element method. A maximum variation of about 2.5% is obtained in the capacitance of a 10 m PVDF film, as compared to its conventional estimate. The operational performance of this model is assessed in terms of its voltage response over the film area for various displacement fields. Conformation of this response to the input displacement field attests to its mathematical integrity. Next, we ascertain the versatility of this model in its role as a sensor for Structural Health Monitoring. To deal with cracks in the host plate, finite size rectangular surfaces are introduced as crack faces. The film domain and the host domain are discretized with an a posteriori h-refinement strategy and compatible interfacial nodes at the film-host interface via finite element interpolation. The resulting coupled problem is solved by static finite element analysis. The nature of the voltage pattern over the film surface is peculiar to the mode of crack, and is a qualitative portrayal of its presence. To correlate the electric potential(voltage) –a distributed parameter – to the geometry and orientation of the crack, as well as to quantify it, electrostatic measures in terms of integrated potential difference and its spatial gradients on the film surface are proffered. The numerical implications of these measures are elicited through simulation results of various crack sizes in damaged and healthy hosts under identical conditions of stress and boundary. The pattern of these measures in a damaged host becomes oscillatory as compared to straight lines observed in a healthy host. Furthermore, the reduced 3-D model is extended to perform dynamic analysis with the inclusion of inertial terms in the governing equilibrium equations. Subsequently, the acceleration terms appear in the governing inhomogeneous system of PDEs in the force terms. Finite element analyses of this extended film model on an isotropic beam with surface and sub-surface cracks, and on a composite plate with delamination, are then performed in the time domain. In all cases, an excellent conformation of the voltage profile at any point in the film domain to the velocity profile at the corresponding point in the film-host interface is observed. Again, to quantify the extent of damage in the host, we proffer electrical measures based on the Lpnorm, of second order, of the voltage and its directional derivatives. We exemplify the numerical implications of these measures in the time domain through sensitivity analysis in regard to the defected areas, and their region of occurrence relative to the film sensor. The response of the film model educes that the relatively flat curves after the first incident pulse in a healthy structure shoots off to a monotonic pattern in damaged hosts. The measures depict high degree of sensitivity in regard to the variation in the area of damage of any nature. An apposition of the static and dynamic analyses is elaborated towards the end of this dissertation. It proves to be very insightful in the damage assessment of the host structure, for it shows the utility of the dynamic model to sense the location of the damage occurrence, whereas a more in-depth assessment on its nature and mode of the crack would demand a static analysis in its proximal regions. To sum up, in light of these models and the proposed measures, this thesis establishes salient justifications pertaining to their pragmatic significance. We believe that these results represent an important contribution towards the ongoing research on understanding the role of boundary constraints in mechanically thin Piezoelectric films.
858

Studies On Pure And Modified Antiferroelectric PbZrO3 Thin Films

Parui, Jayanta 01 1900 (has links)
Metal oxides crystallized in perovskite structure are generally modified in two different ways. According to the general structural formula ABO3, the two ways are A-site modification and B-site modification. The primary significance of perovskite metal oxides rests on their importance in electronic devices. A particular class of perovskites, namely Lead Zirconate or modified Lead Zirconate has received a special attention because of their unique antiferroelectricity and various applications in devices. Among the other modifications, A-site modification of PbZrO3 by La is rare and not much explored. Chapter 1 describes various applications of antiferroelectric thin films along with the synthesis and characterization of pure and La modified PbZrO3, which are relevant to the work presented in this thesis. Sol-gel processing and spin coating technique to deposit solid oxide thin films are well known for their low cost of deposition as well as for their ability to achieve better stoichiometric chemical composition. Common crack formation problem of sol-gel grown films can be prevented by ‘drying control chemical adhesive’ like polyvinylpyrrolidone (PVP). Heat treatment of sol-gel derived thin films is generally determined by TGA and DTA. Crystalline phase of deposited solid thin films is determined by XRD whereas effect of modification can be ascertained by XRD peak assignment and relative crystalline peak shifting. Sol-gel grown film thickness is measured by common cross sectional SEM whereas AFM can detail the surface morphology. Chapter 2 summarizes the deposition and characterization of pure and La modified PbZrO3 thin films. Any nonmetal, which is insulator, is dielectric material and show dielectric dispersion in a frequency domain of low field alternative current. Among the most common feature of dielectric dispersion, Maxwell – Wagner type dispersion is well known. Similar kind of dielectric dispersion, named Maxwell – Wagner like dispersion, can be observed while the equivalent circuit consists of parallel G – C along with a series R. Universal power law of ac conductivity is the deciding factor to distinguish the nature of dispersion. Structural phase transition can be determined by dielectric response and it is widely known as dielectric phase transition. Effect of La modification on dielectric phase transition of PbZrO3 thin films depends on stabilization or destabilization of antiferroelectricity. Maximum dielectric constants of pure and modified PbZrO3 thin films depend on the crystallographic orientations of the growth. Chapter 3 presents dielectric properties of pure and La modified PbZrO3 thin films and these properties are correlated to the stabilization or destabilization of antiferroelectricity, relative integrated intensity of (202)O film orientation and trapped electron charge due to oxygen vacancies. Charge storage property of a capacitor is determined by the polarization of the capacitor on application of electric field whereas field dependent integrated area of polarization on withdrawal of electric field determines the recoverable capacitive energy storage. Among the three kinds of capacitors like linear or paraelectric, ferroelectric and antiferroelectric capacitors, antiferroelectric capacitor is known to be best for their ability to store huge amount of recoverable energy. The recoverable energy in antiferroelectrics can be increased by increasing squareness of the P – E hysteresis loop, applicable electric field, polarization or by the all possible combinations of them. Chapter 4 describes the correlation of relative integrated intensity of (202)O [RI(202)O] with critical applied electric field of P – E saturation to provide enhanced squareness of the hysteresis loops. This chapter also describes the variation of charge and recoverable energy storage properties with respect to RI(202)O. Like magnetocaloric effect, electrocaloric effect is capable to alter the temperature of a system by adiabatic polarization or depolarization. From the Maxwell’s relation of thermodynamics, assuming, (∂p ) = (∂s )electrocaloric effect can be calculated from temperature dependent polarization value of a paraelectric, ferroelectric or an antiferroelectric. Chapter 5 presents the electrocaloric effect of pure and La modified PbZrO3 thin films. Summary of present study and discussion have been delineated in Chapter 6 along with the future work which can give more insight into the understanding of antiferroelectric PbZrO3 thin films with respect to Pb and Zr site modification and with respect to different electrodes. (For formulas pl see the pdf file of the thesis)
859

Processing and Properties of Ferroelectric Ag(Ta,Nb)O3 Thin Films

Koh, Jung-Hyuk January 2002 (has links)
<p>High tunability and low loss tangent of ferroelectric thinfilms offer unique opportunity for the development of variousmicrowave devices. Silver tantalate niobate, which showsexcellent microwave properties, was selected for this study.Ag(Ta,Nb)O<sub>3</sub>(ATN) showed week dielectric dispersion in a widefrequency range from 1 kHz up to 100 GHz, negligible losses upto 30 GHz, and ease to tailor paraelectric state in a widetemperature range by Ta:Nb ratio.</p><p>This thesis is mainly based on the synthesis andcharacterization of niobate ferroelectric ATN thin films. Thinfilms for various measurements were prepared by pulsed laserdeposition and rf-magnetron sputtering techniques.</p><p>X-ray diffraction (XRD) pattern show that ATN/Pt<sub>80</sub>Ir<sub>20</sub>films have been found to be (001) preferentiallyoriented, while the epitaxial quality of ATN/LaAlO<sub>3</sub>heterostructures have been ascertained. Dielectricproperties were analyzed by measuring the relationship betweendielectric permittivity and frequency as well as dielectricpermittivity and temperature. Reliable tracing of theferroelectric hysteresis polarization versus electric loopsindicate the ferroelectric state in ATN films at temperaturebelow 125 K and yields the remanant polarization of 0.4µC/cm<sup>2</sup>@ 77 K.</p><p>The fundamental current-voltage behavior in Ag(Ta,Nb)O<sub>3</sub>ferroelectric films was measured usingMe/Ag(Ta,Nb)O<sub>3</sub>/Pt<sub>80</sub>Ir<sub>20</sub>, Me = Pd, Au, Cr, and Al, vertical capacitivecell structures with different top electrodes. Various kinds ofconduction mechanisms such as Schottky emission, Poole-Frenkel,Fowler-Nordheim, and ionic conduction were classified.</p><p>Finally, by fabricating interdigital capacitors on the oxidesubstrates, the characteristics and performances of Ag(Ta,Nb)O<sub>3</sub>varactors were examined. Au/Cr/ATN/LaAlO<sub>3</sub>interdigital capacitors exhibited loss tangent aslow as 0.0033 @ 1 MHz, weak frequency dispersion of 5.8 % in 1kHz to 1 MHz range, tunability as high as 16.4 %,<i>K</i>-factor (tunability/tanδ) higher than 48.</p>
860

Processing and Properties of Ultrathin Perovskite Manganites

Johnsson, Peter January 2003 (has links)
No description available.

Page generated in 0.059 seconds