• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 65
  • 32
  • 19
  • 13
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 318
  • 318
  • 92
  • 73
  • 72
  • 66
  • 65
  • 45
  • 44
  • 42
  • 41
  • 39
  • 36
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

CONDUCTED EMISSION STUDY ON SI AND SIC POWER DEVICES

Guo, Wilson 13 May 2019 (has links)
No description available.
72

Load Flow and State Estimation Algorithms for Three-Phase Unbalanced Power Distribution Systems

Madvesh, Chiranjeevi 15 August 2014 (has links)
Distribution load flow and state estimation are two important functions in distribution energy management systems (DEMS) and advanced distribution automation (ADA) systems. Distribution load flow analysis is a tool which helps to analyze the status of a power distribution system under steady-state operating conditions. In this research, an effective and comprehensive load flow algorithm is developed to extensively incorporate the distribution system components. Distribution system state estimation is a mathematical procedure which aims to estimate the operating states of a power distribution system by utilizing the information collected from available measurement devices in real-time. An efficient and computationally effective state estimation algorithm adapting the weighted-least-squares (WLS) method has been developed in this research. Both the developed algorithms are tested on different I testeeders and the results obtained are justified.
73

Control Based Soft Switching Three-phase Micro-inverter: Efficiency And Power Density Optimization

Amirahmadi, Ahmadreza 01 January 2014 (has links)
In the field of renewable energy, solar photovoltaic is growing exponentially. Grid-tied PV micro-inverters have become the trend for future PV system development because of their remarkable advantages such as enhanced energy production due to MPPT implementation for each PV panel, high reliability due to redundant and distributed system architecture, and simple design, installation, and management due to its plug-and-play feature. Conventional approaches for the PV micro-inverters are mainly in the form of single-phase grid connected and they aim at the residential and commercial rooftop applications. It would be advantageous to extend the micro-inverter concept to large size PV installations such as MW-class solar farms where threephase AC connections are used. The relatively high cost of the three-phase micro-inverter is the biggest barrier to its large scale deployment. Increasing the switching frequency may be the best way to reduce cost by shrinking the size of reactive components and heat-sink. However, this approach could cause conversion efficiency to drop dramatically without employing soft switching techniques or using costly new devices. This dissertation presents a new zero voltage switching control method that is suitable for low power applications such as three-phase micro-inverters. The proposed hybrid boundary conduction mode (BCM) current control method increases the efficiency and power density of the micro-inverters and features both reduced number of components and easy digital implementation. Zero voltage switching is achieved by controlling the inductor current bidirectional in every switching cycle and results in lower switching losses, higher operating frequency, and reduced size and cost of passive components, especially magnetic cores. Some iv practical aspects of hybrid control implementation such as dead-time insertion can degrade the performance of the micro-inverter. A dead-time compensation method that improves the performance of hybrid BCM current control by decreasing the output current THD and reducing the zero crossing distortion is presented. Different BCM ZVS current control modulation schemes are compared based on power losses breakdown, switching frequency range, and current quality. Compared to continuous conduction mode (CCM) current control, BCM ZVS control decreases MOSFET switching losses and filter inductor conduction losses but increases MOSFET conduction losses and inductor core losses. Based on the loss analysis, a dual-mode current modulation method combining ZVS and zero current switching (ZCS) schemes is proposed to improve the efficiency of the micro-inverter. Finally, a method of maintaining high power conversion efficiency across the entire load range of the three-phase micro-inverter is proposed. The proposed control method substantially increases the conversion efficiency at light loads by minimizing switching losses of semiconductor devices as well as core losses of magnetic components. This is accomplished by entering a phase skipping operating mode wherein two phases of an inverter are disabled and three inverters are combined to form a new three-phase system with minimal grid imbalance. A 400W prototype of a three-phase micro-inverter and its hybrid control system have been designed and tested under different conditions to verify the effectiveness of the proposed controller, current modulation scheme, and light load efficiency enhancement method.
74

Automation, Annunciation, and Emergency Safety Shutdown of a Laboratory Microgrid Using a Real-Time Automation Controller (RTAC)

Vo, Do 01 May 2021 (has links) (PDF)
Over the last decade, microgrid deployments throughout the world have increased. In 2019, a record number of 546 microgrids were installed in the United States [1]. This trend continues upward to combat extreme weather conditions and power shortages throughout the country. To better equip students with the necessary skillsets and knowledge to advance in the microgrid field, Cal Poly San Luis Obispo's Electrical Engineering Department and the Power Energy Institute have invested resources to develop a laboratory microgrid. This thesis sets to improve the laboratory microgrid's existing automation using the Schweitzer Engineering Laboratory SEL-3530 Real-time Automation Controller (RTAC). The improved automation features a new load-shedding scheme, LCD annunciator and meter panel, and emergency safety shutdown system. The load shedding scheme aims to enhance the grid's frequency stability when the inverter-based power output declines. The LCD annunciator and meter panels provide real-time oversight of the microgrid operating conditions via the RTAC Human Machine Interface (HMI). The emergency safety shutdown enables prompt de-energization and complete isolation of the laboratory microgrid in hazardous conditions such as earthquake, fire, arcing, and equipment malfunction and activates an audible siren to alert help. This safety system provides safety and peace of mind for students and faculties who operate the Microgrid. Lastly, this thesis provides an operating procedure for ease of operation and experiment.
75

Towards Three-Phase Dynamic Analysis of Large Electric Power Systems

Parchure, Abhineet Himanshu 20 July 2015 (has links)
This thesis primarily focuses on studying the impact of Distributed Generation (DG) on the electromechanical transients in the electric grid (distribution, transmission or combined transmission and distribution (TandD) systems) using a Three Phase Dynamics Analyzer (hereafter referred to as TPDA). TPDA includes dynamic models for electric machines, their controllers, and a three-phase model of the electric grid, and performs three-phase dynamic simulations without assuming a positive sequence network model. As a result, TPDA can be used for more accurate investigation of electromechanical transients in the electric grid in the presence of imbalances. At present, the Electromagnetic Transient Program (EMTP) software can be used to perform three-phase dynamic simulations. This software models the differential equations of the entire electric network along with those of the machines. This calls for solving differential equations with time constants in the order of milliseconds (representing the fast electric network) in tandem with differential equations with time constants in the order of seconds (representing the slower electromechanical machines). This results in a stiff set of differential equations, making such an analysis extremely time consuming. For the purpose of electromechanical transient analysis, TPDA exploits the difference in the order of time constants and adopts phasor analysis of the electric network, solving differential equations only for the equipment whose dynamics are much slower than those of the electric network. Power Flow equations are solved using a graph trace analysis based approach which, along with the explicit partitioned method adopted in TPDA, can eventually lead to the use of distributed computing that will further enhance the speed of TPDA and perhaps enable it to perform dynamic simulation in real time . In the work presented here, first an overview of the methodology behind TPDA is provided. A description of the object oriented implementation of TPDA in C++/C# is included. Subsequently, TPDA is shown to accurately simulate power system dynamics of balanced networks by comparing its results against those obtained using GE-PSLF®. This is followed by an analysis that demonstrates the advantages of using TPDA by highlighting the differences in results when the same problem is analyzed using a three-phase network model with unbalances and the positive sequence network model as used in GE-PSLF®. Finally, the impact of rapidly varying DG generation is analyzed, and it is shown that as the penetration level of DG increases, the current and voltage oscillations throughout the transmission network increase as well. Further, rotor speed deviations are shown to grow proportionally with increasing DG penetration. / Master of Science
76

Voltage Unbalance Mitigation in Low Voltage Distribution Networks using Time Series Three-Phase Optimal Power Flow

Al-Ja'afreh, M.A.A., Mokryani, Geev 12 October 2021 (has links)
No / Due to high penetration of single-phase Photovoltaic (PV) cells into low voltage (LV) distribution networks, several impacts such as voltage unbalance, voltage rise, power losses, reverse power flow arise which leads to operational constraints violation in the network. In this paper, a time series Three Phase Optimal Power Flow (TPOPF) method is proposed to minimize the voltage unbalance in LV distribution networks with high penetration of residential PVs. TPOPF problem is formulated using the current injection method in which the PVs are modelled via a time-varying PV power profile with active and reactive power control. The proposed method is validated on a real LV distribution feeder. The results show that the reactive power management of the PVs helps mitigate the voltage unbalance significantly. Moreover, the voltage unbalance index reduced significantly compared to the case without voltage unbalance minimisation. / Innovate UK GCRF Energy Catalyst Pi-CREST project under Grant number 41358; British Academy GCRF COMPENSE project under Grant GCRFNGR3\1541; Mut’ah University, Jordan
77

Flux-Based Dynamic Subspace Model Predictive Control of Dual-Three Phase Permanent Magnet Synchronous Motors

Agnihotri, Williem 11 1900 (has links)
ual-three phase permanent magnet synchronous motors (DTP-PMSM) are becom ing more popular in the automotive field. Their potential to increase the reliability and efficiency of the vehicle makes them an attractive replacement for the three phase alternative. However, the increased number of phases makes the control of the machine more complex. As a result, conventional controllers can see reduced perfor mance, especially at high speeds and torques. Currently, with the increased process ing power of modern micro-controllers and field-programmable gate arrays (FPGA), many researchers are investigating whether finite-control set model predictive control (FCS-MPC) can be a suitable alternative. FCS-MPC is simple to implement and can achieve a better dynamic performance when compared to other controllers. Furthermore, the algorithm can be augmented for specific optimization goals and non-linearities to the system, which gives the designer creativity in improving the system response. However, Model-Predictive Control suffers from a variable switching frequency as well as reduced steady-state performance. It generally has increased current ripple in the phase currents. This thesis presents a method of reducing the steady-state ripples in FCS-MPC by introducing the use of virtual-flux in the model equations, the incremental model, and a dynamic vector search-space. All three of these applications make FCS-MPC have a iv significantly improved steady-state performance when compared to the conventional algorithm, while still keeping the benefit of the improved dynamic response. The benefits of the proposed techniques techniques are verified through simulation as well as on an experimental setup. / Thesis / Master of Applied Science (MASc)
78

Three-Phase Inverter Design Using Wide-Bandgap Semiconductors to Achieve High Power Density

Eull, William January 2016 (has links)
Electric and more-electric vehicle proliferation continues unabated as government mandates worldwide demand fuel economies in excess of what conventional internal combustion engines are capable of. Vehicle electrification, to any degree, is perceived to be the means by which automotive companies may meet these targets. Electrification introduces a myriad of problems including cost, weight and reliability, all of which must be addressed in their own right. The rapid commercialisation of wide-bandgap semiconductor materials which, as a whole, exhibit properties superior to ubiquitous Silicon, provides the opportunity for power electronic converter minimisation and efficiency maximisation, easing the challenge of meeting current and incoming standards. This thesis concerns itself with the design methodology of a highly power dense converter, as applied to a three-phase inverter. By using figures of merit, simple modelling techniques and novel discrete component selection tools, a converter is designed that is capable of switching 30kW of electric power at 100kHz in a small package. Testing results show that the converter, with a simple forced air heatsinking solution, can effectively switch 9kW of power and is capable of reaching 15kW. Given the temperature rise of one phase leg of the inverter relative to the others, a superior heatsink design would allow the inverter to reach its rated power levels. / Dissertation / Master of Applied Science (MASc)
79

An Algorithm and System for Measuring Impedance in D-Q Coordinates

Francis, Gerald 10 May 2010 (has links)
This dissertation presents work conducted at the Center for Power Electronics Systems (CPES) at Virginia Polytechnic Institute and State University. Chapter 1 introduces the concept of impedance measurement, and discusses previous work on this topic. This chapter also addresses issues associated with impedance measurement. Chapter 2 introduces the analyzer architecture and the proposed algorithm. The algorithm involves locking on to the voltage vector at the point of common coupling between the analyzer and the system via a PLL to establish a D-Q frame. A series of sweeps are performed, injecting at least two independent angles in the D-Q plane, acquiring D- and Q-axis voltages and currents for each axis of injection at the point of interest. Chapter 3 discusses the analyzer hardware and the criteria for selection. The hardware built ranges from large-scale power level hardware to communication hardware implementing a universal serial bus. An eight-layer PCB was constructed implementing analog signal conditioning and conversion to and from digital signals with high resolution. The PCB interfaces with the existing Universal Controller hardware. Chapter 4 discusses the analyzer software. Software was written in C++, VHDL, and Matlab to implement the measurement process. This chapter also provides a description of the software architecture and individual components. Chapter 5 discusses the application of the analyzer to various examples. A dynamic model of the analyzer is constructed, considering all components of the measurement system. Congruence with predicted results is demonstrated for three-phase balanced linear impedance networks, which can be directly derived based on stationary impedance measurements. Other impedances measured include a voltage source inverter, Vienna rectifier, six-pulse rectifier and an autotransformer-rectifier unit. / Ph. D.
80

Unified zero-current-transition techniques for high-power three-phase PWM inverters

Li, Yong 18 April 2002 (has links)
This dissertation is devoted to a unified and comprehensive study of zero-current-transition (ZCT) soft-switching techniques for high-power three-phase PWM inverter applications. Major efforts in this study are as follows: 1) Conception of one new ZCT scheme and one new ZCT topology; 2) Systematic comparison of a family of ZCT inverters; 3) Design, implementation and experimental evaluation of two 55-kW prototype inverters for electric vehicle (EV) motor drives that are developed based on the proposed ZCT concepts; and 4) Investigation of the ZCT concepts in megawatts high-frequency power conversions. The proposed ZCT techniques are also applicable to three-phase power-factor-correction (PFC) rectifiers. In order to minimize switching losses, this work first proposes a new control scheme for an existing three-phase ZCT inverter circuit that uses six auxiliary switches. The proposed scheme, called the six-switch ZV/ZCT, enables all main switches, diodes and auxiliary switches to be turned off under zero-current conditions, and in the meantime provides an opportunity to achieve zero-voltage turn-on for the main switches. Meanwhile, it requires no modification to normal PWM algorithms. Compared with existing ZCT schemes, the diode reverse-recovery current is reduced significantly, the switching turn-on loss is reduced by 50%, the resonant capacitor voltage stress is reduced by 30%, and the current and thermal stresses in the auxiliary switches are evenly distributed. However, a big drawback of the six-switch ZV/ZCT topology, as well as of other types of soft-switching topologies using six auxiliary switches, is the high cost and large space associated with the auxiliary switches. To overcome this drawback, this work further proposes a new three-phase ZCT inverter topology that uses only three auxiliary switches-- the three-switch ZCT. The significance of the proposed three-switch ZCT topology is that, among three-phase soft-switching inverters developed so far, this is the only one that uses fewer than six auxiliary switches and still has the following three features: 1) soft commutation for all main switches, diodes and auxiliary switches in all operation modes; 2) no modification to normal PWM algorithms; and 3) in practical implementations, no need for extra resonant current sensing, saturable cores, or snubbers to protect the auxiliary switches. The proposed six-switch ZV/ZCT and three-switch ZCT inverters, together with existing ZCT inverters, constitute a family of three-phase ZCT inverters. To explore the fundamental properties of these inverters, a systematic comparative study is conducted. A simplified equivalent circuit is developed to unify common traits of ZCT commutations. With the visual aid of state planes, the evolution of the family of ZCT inverters is examined, and their differences and connections are identified. Behaviors of individual inverters, including switching conditions, circulating energy, and device/component stresses, are compared. Based on the proposed six-switch ZV/ZCT and three-switch ZCT techniques, two 55-kW prototype inverters for EV traction motor drives have been built and tested to the full-power level with a closed-loop controlled induction motor dynamometer. The desired ZCT soft-switching features are realized together with motor drive functions. A research effort is carried out to develop a systematic and practical design methodology for the ZCT inverters, and an experimental evaluation of the ZCT techniques in the EV motor drive application is conducted. The design approach integrates system optimization with characterizations of the main IGBT device under the ZCT conditions, selection, testing and characterization of the auxiliary devices, design and selection of the resonant inductors and capacitors, inverter loss modeling and numerical analysis, system-level operation aspects, and layout and parasitic considerations. Different design aspects between these two ZCT inverters are compared and elaborated. The complexity of the 55-kW prototype implementations is compared as well. Efficiencies are measured and compared under a group of torque/speed points for typical EV drive cycles. Megawatts high-frequency power conversion is another potential application of the ZCT techniques. The integrated gate commutated thyristor (IGCT) device is tested and characterized under the proposed six-switch ZV/ZCT condition, and the test shows promising results in reducing switching losses and stresses. Improvements in the IGCT switching frequency and simplification of the cooling requirements under ZCT operations are discussed. In addition, a generalized ZCT cell concept is developed based on the proposed three-switch ZCT topology. This concept leads to the discovery of a family of simplified multilevel soft-switching inverters that reduce the number of auxiliary switches by half, and still maintain desirable features. / Ph. D.

Page generated in 0.053 seconds