• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 22
  • 14
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 181
  • 127
  • 99
  • 87
  • 53
  • 40
  • 35
  • 28
  • 23
  • 19
  • 19
  • 19
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Régulation de la morphogenèse et de la division cellulaire du pneumocoque par phosphorylation : rôle de la sérine / thréonine kinase StkP et des protéines DivIVA, GpsB et MapZ / Regulation of the pneumococcal morphogenesis and cell division by phosphorylation : role of the serine/threonine kinase StkP and the proteins DivIVA, GpsB and MapZ

Manuse, Sylvie 14 December 2015 (has links)
Malgré les modèles établis pour certaines bactéries, la morphogenèse de bactéries de formes atypiques est peu comprise. C'est le cas de la bactérie pathogène pour l'homme Streptococcus pneumoniae, ou pneumocoque, qui possède une forme ovo-diplococcale. Cependant, à mon arrivé au laboratoire, il avait été démontré qu'une sérine/thréonine protéine-kinase membranaire appelée StkP était indispensable à la division cellulaire et à la morphogenèse du pneumocoque. L'objectif de ma thèse a ainsi été de caractériser certains substrats de StkP et d'étudier leur rôle, ainsi que l'impact de leur phosphorylation, au cours du processus de division cellulaire. Dans ce contexte, j'ai montré que le substrat DivIVA et son paralogue GpsB coordonnent l'élongation et la division cellulaire du pneumocoque. Ces travaux permettent de proposer un nouveau modèle de morphogenèse du pneumocoque dans lequel la triade StkP/DivIVA/GpsB organise la synthèse de la paroi cellulaire nécessaire à l'élongation et à la division de la cellule. J'ai également mis en évidence que la protéine MapZ interagit avec la paroi cellulaire lors de l'élongation cellulaire afin de marquer de manière permanente le site de division, où elle recrute la protéine FtsZ. Ces travaux ont ainsi permis d'identifier un système inédit de régulation positive du positionnement du site de division chez les bactéries. Enfin, j'ai caractérisé les déterminants moléculaires du positionnement de MapZ au centre de la cellule. S. pneumoniae étant un pathogène humain important, nous pouvons anticiper que nos données pourraient servir de base fondamentale à des projets plus appliqués de lutte contre les infections bactériennes / Despite the established models for some bacteria, the morphogenesis of bacteria with atypical shapes is poorly understood. This is the case of the human pathogen Streptococcus pneumoniae, or pneumococcus, that displays an ovo-diplococcal shape. However, when I joined the lab, it had just been shown that a membrane serine/threonine kinase named StkP was crucial for the cell division and the morphogenesis of the pneumococcus. The goal of my thesis was to characterize the substrates of StkP and to study their function as well as the impact of their phosphorylation in the cell division process. First, I have shown that the substrate DivIVA together with its paralog GpsB coordinate cell elongation and division of the pneumococcus. Based on these observations, we propose a new model of pneumococcal morphogenesis in which the triad StkP/DivIVA/GpsB organizes cell wall synthesis involved in cell elongation and division. In a second part of my work, I have studied another substrate of StkP that was of unknown function and that we named MapZ. I have shown that MapZ interacts with the cell wall during the cell elongation to position at midcell. Then MapZ recruits the cell division protein FtsZ and controls the closure of the Z-ring. This work has uncovered a new mechanism of positive regulation for the positioning of the division site in bacteria. Finally, I characterized the molecular determinants of MapZ positioning at the division site. S. pneumoniae is an important human pathogen, we can thus anticipate that our work will represent a fundamental base for applied projects in order to develop new strategies against bacterial infections
162

Metabolic Adaptation For Utilization Of Short-Chain Fatty Acids In Salmonella Typhimurium : Structural And Functional Studies On 2-methylcitrate Synthase, Acetate And Propionate Kinases

Chittori, Sagar 07 1900 (has links) (PDF)
Three-dimensional structures of proteins provide insights into the mechanisms of macromolecular assembly, enzyme catalysis and mode of activation, substrate-specificity, ligand-binding properties, stability and dynamical features. X-ray crystallography has become the method of choice in structural biology due to the remarkable methodological advances made in the generation of intense X-ray beams with very low divergence, cryocooling methods to prolong useful life of irradiated crystals, sensitive methods of Xray diffraction data collection, automated and fast methods for data processing, advances and automation in methods of computational crystallography, comparative analysis of macromolecular structures along with parallel advances in biochemical and molecular biology methods that allow production of the desired biomolecule in quantities sufficient for X-ray diffraction studies. Advances in molecular biology techniques and genomic data have helped in identifying metabolic pathways responsible for metabolism of short-chain fatty acids (SCFAs). The primary objective of this thesis is application of crystallographic techniques for understanding the structure and function of enzymes involved in the metabolism of SCFAs in S. typhimurium. Pathways chosen for the present study are (i) propionate degradation to pyruvate and succinate by 2-methylcitrate pathway involving gene products of the prp operon, (ii) acetate activation to acetyl-CoA by AckA-Pta pathway involving gene products of the ack-pta operon, (iii) threonine degradation to propionate involving gene products of the tdc operon, (iv) 1,2-propanediol (1,2-PD) degradation to propionate involving gene products of the pdu operon. These metabolic pathways utilize a large number of enzymes with diverse catalytic mechanisms. The main objectives of the work include structural and functional studies on 2-methycitrate synthase (PrpC), acetate kinase (AckA), propionate kinase isoforms (PduW and TdcD) and propanol dehydrogenase (PduQ) from S. typhimurium. In the present work, these proteins were cloned, expressed, purified and characterized. The purified proteins were crystallized using standard methods. The crystals were placed in an X-ray beam and diffraction data were collected and used for the elucidation of structure of the proteins. The structures were subjected to rigorous comparative analysis and the results were complemented with suitable biochemical and biophysical experiments. The thesis begins with a review of the current literature on SCFAs metabolism in bacteria, emphasizing studies carried out on S. typhimurium and the closely related E. coli as well as organisms for which the structure of a homologue has been determined (Chapter 1). Metabolic pathways involving acetate utilization by activation to acetyl- CoA, propionate degradation to pyruvate and succinate, anaerobic degradation of Lthreonine to propionate and, 1,2-PD degradation to propionate are described in this chapter. Common experimental and computational methods used during the course of investigations are described in Chapter 2, as most of these are applicable to all structure determinations and analyses. Experimental procedures described here include cloning, overexpression, purification, crystallization and intensity data collection. Computational methods covered include details of various programs used during data processing, structure solution, refinement, model building, validation and structural analysis. In Chapter 3, X-ray crystal structure of S. typhimurium 2-methylcitrate synthase (StPrpC; EC 2.3.3.5) determined at 2.4 Å resolution and its functional characterization is reported. StPrpC catalyzes aldol-condensation of oxaloacetate and propionyl-CoA to 2- methylcitrate and CoA in the second step of 2-methylcitrate pathway. StPrpC forms a dimer in solution and utilizes propionyl-CoA more efficiently than acetyl-CoA or butyryl- CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might be responsible for the specificities for acyl-CoAs of these enzymes. Structural comparison with the ligand free (open) and bound (closed) states of CSs showed that StPrpC represents the first apo structure among xvi CS homologs in a nearly closed conformation. StPrpC molecules were organized as decamers, composed of five identical dimer units, in the P1 crystal cell. Higher order oligomerization of StPrpC is likely to be due to high pH (9.0) of the crystallization condition. In gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coli CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural and functional studies on S. typhimurium acetate kinase (StAckA; EC 2.7.2.1) are described in Chapter 4. Acetate kinase, an enzyme widely distributed in the bacteria and archaea domains, catalyzes the reversible phosphoryl transfer from ATP to acetate in the presence of a metal ion during acetate metabolism. StAckA catalyzes Mg2+ dependent phosphate transfer from ATP to acetate 10 times more efficiently when compared to propionate. Butyrate was found to inhibit the activity of the enzyme. Kinetic analysis showed that ATP and Mg2+ could be effectively substituted by other nucleoside 5′-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. The X-ray crystal structure of StAckA was determined in two different forms at 2.70 Å (Form-I) and 1.90 Å (Form-II) resolutions, respectively. StAckA contains a fold with the topology βββαβαβα, similar to those of glycerol kinase, hexokinase, heat shock cognate 70 (Hsc70) and actin. StAckA consists of two domains with an active site cleft at the domain interface. Comparison of StAckA structure with those of ligand complexes of other acetokinase family proteins permitted the identification of residues essential for substrate binding and catalysis. Conservation of most of these residues points to both structural and mechanistic similarities between enzymes of this family. Examination of the active site pocket revealed a plausible structural rationale for the greater specificity of the enzyme towards acetate than propionate. Intriguingly, a major conformational reorganization and partial disorder in a large segment consisting of residues 230-297 of the polypeptide was observed in Form-II. Electron density corresponding to a plausible xvii citrate was observed at a novel binding pocket present at the dimeric interface. Citrate bound at this site might be responsible for the observed disorder in the Form-II structure. A similar ligand binding pocket and residues lining the pocket were also found to be conserved in other structurally known enzymes of acetokinase family. These observations and examination of enzymatic reaction in the presence of citrate and succinate (tricarboxylic acid cycle intermediates) suggested that binding of ligands at this pocket might be important for allosteric regulation in this family of enzymes. Propionate kinase (EC 2.7.2.15) catalyzes reversible conversion of propionylphosphate and ADP to propionate and ATP. S. typhimurium possess two isoforms of propionate kinase, PduW and TdcD, involved in 1,2-propanediol degradation to propionate and in L-threonine degradation to propionate, respectively. In Chapter 5, structural and functional analyses of PduW and TdcD, carried out to gain insights into the substrate-binding pocket and catalytic mechanism of these enzymes, are described. Both isoforms showed broad specificity for utilization of SCFAs (propionate > acetate), nucleotides (ATP ≈ GTP > UTP > CTP) and metal ions (Mg2+ ≈ Mn2+). Molecular modeling of StPduW indicated that the enzyme is likely to adopt a fold similar to other members of acetokinase family. The residues at the active site are well conserved. Differences in the size of hydrophobic pocket where the substrate binds, particularly the replacement of a valine residue in acetate kinases (StAckA: Val93) by an alanine in propionate kinases (StPduW: Ala92; StTdcD: Ala88), could account for the observed greater affinity towards their cognate SCFAs. Crystal structures of TdcD from S. typhimurium in complex with various nucleotides were determined using native StTdcD as the phasing model. Nucleotide complexes of StTdcD provide a structural rationale for the broad specificity of the enzyme for its cofactor. Binding of ethylene glycol close to the γ-phosphate of GTP might suggest a direct in-line transfer mechanism. The thesis concludes with a brief discussion on the future prospects of the work. xviii Projects carried out as part of Master of Science projects and as additional activity during the course of the thesis work are described in three appendices. Analysis of the genomic sequences of E. coli and S. typhimurium has revealed the presence of hpa operon essential for 4-hydroxyphenylacetate (4-HPA) catabolism. S. typhimurium hpaE gene encodes for a 55 kDa polypeptide (StHpaE; EC 1.2.1.60) which catalyzes conversion of 5-carboxymethyl-2-hydroxymuconic semialdehyde (CHMS) to 5-carboxymethyl-2-hydroxymuconic aldehyde (CHMA) in 4-HPA metabolism. Sequence analysis of StHpaE showed that it belongs to aldehyde dehydrogenase (ALDH) superfamily and possesses residues equivalent to the catalytic glutamate and cysteine residues of homologous enzymes (Appendix A). The gene was cloned in pRSET C expression vector and the recombinant protein was purified using Ni-NTA affinity chromatography. The enzyme forms a tetramer in solution and shows catalytic activity toward the substrate analog adipic semialdehyde. Crystal structure of StHpaE revealed that it contains three domains; two dinucleotide-binding domains, a Rossmann-fold type domain, and a small three-stranded β-sheet domain, which is involved in tetrameric interactions. NAD+-bound crystal of StHpaE permitted identification of active site pocket and residues important for ligand anchoring and catalysis. Mutarotases or aldose 1-epimerases (EC 5.1.3.3) play a key role in carbohydrate metabolism by catalyzing the interconversion of α- and β-anomers of sugars. S. typhimurium YeaD (StYeaD), annotated as aldose 1-epimerase, has very low sequence identity with other well characterized mutarotases. In Appendix B, the crystal structure of StYeaD determined in orthorhombic and monoclinic crystal forms at 1.9 Å and 2.5 Å resolutions, respectively are reported. StYeaD possesses a fold similar to those of galactose mutarotases (GalMs). Structural comparison of StYeaD with GalMs has permitted identification of residues involved in catalysis and substrate anchoring. In spite xix of the similar fold and conservation of catalytic residues, minor but significant differences in the substrate binding pocket were observed compared to GalMs. Therefore, the substrate specificity of YeaD like proteins seems to be distinct from those of GalMs. Pepper Vein Banding Virus (PVBV) is a member of the genus potyvirus and infects Solanaceae plants. PVBV is a single-stranded positive-sense RNA virus with a genome-linked viral protein (VPg) covalently attached at the 5'-terminus. In order to establish the role of VPg in the initiation of replication of the virus, recombinant PVBV VPg was over-expressed in E. coli and purified using Ni-NTA affinity chromatography (Appendix C). PVBV NIb was found to uridylylate Tyr66 of VPg in a templateindependent manner. Studies on N- and C-terminal deletion mutants of VPg revealed that N-terminal 21 and C-terminal 92 residues of PVBV VPg are dispensable for in vitro uridylylation by PVBV NIb.
163

Transcriptional Regulation of VEGFA by Unfolded Protein Response Signaling Pathway

Ghosh, Rajarshi 23 March 2010 (has links)
The endoplasmic reticulum is the primary organelle in the cell which has the responsibility of properly folding proteins belonging to the secretory pathway. Secretory proteins are essential for a variety of functions within the body like metabolism, growth and survival. Hence, proper folding of the proteins in the ER is absolutely essential to maintain cellular and body function. The environment of the ER is substantially different from that of the cytoplasm and is primed essentially to provide the optimum conditions to fold newly synthesized polypeptides following translation by the ribosomes in the cytoplasm and on the surface of the ER. In order for secretory proteins to fold properly, ER homeostasis must be maintained. ER homeostasis is defined by the dynamic balance between the ER protein load and the ER capacity to process this load. The optimum environment of the ER, or ER homeostasis, can be perturbed by pathological processes such as hypoxia, glucose deprivation, viral infections, environmental toxins, inflammatory cytokines, and mutant protein expression, as well as by physiological processes such as aging. Disruption of ER homeostasis causes accumulation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress. Cells cope with ER stress by activating the unfolded protein response (UPR). The UPR is initiated by three ER transmembrane proteins: Inositol requiring 1 (IRE1), PKR-like ER kinase, and activating transcription factor 6 (ATF6). These three master regulators sense and interpret protein folding conditions in the ER and translate this information across the ER membrane to activate downstream effectors, spliced XBP1, phosphorylated eIF2α and ATF4, and cleaved active ATF6 respectively. These effectors have two distinct outputs, homeostatic and apoptotic. Homeostatic outputs are adaptive responses that function to attenuate ER stress and restore ER homeostasis. These responses include the attenuation of protein translation to reduce ER workload and prevent further accumulation of unfolded proteins, upregulation of molecular chaperones and protein processing enzymes to enhance the ER folding activity, and the increase in ER-associated degradation (ERAD) components to promote clearance of unfolded proteins. When ER stress reaches a point where the cells cannot tolerate the load of unfolded proteins any more, apoptosis sets in. One of the major secretory proteins in mammals, vascular endothelial growth factor VEGF, is essential for either normal or pathological angiogenesis (blood vessel development). VEGFA is the primary member of this family which is expressed in all endothelial cells and is responsible for sprouting and invasion of blood vessels into the interstitium and thus helps in supplying nutrients and oxygen to growing cells. Recent studies have indicated that cells suffering from insufficient blood supply experience ER stress. The ER needs energy and oxygen for the folding process, thus nutrient deprivation (low ATP production) and hypoxia caused by insufficient blood supply leads to inefficient protein folding and ER stress in cells, especially in cancer cells that grow and spread rapidly. This condition also occurs in the development of the mammalian placenta. The placenta is an essential tissue characterized by a lot of blood vessels. It is responsible for the exchange of nutrients and growth factors between maternal and fetal blood vessels and hence is essential for survival of the embryo. Nutrient deprivation and hypoxia stimulate the production of VEGFA and other angiogenic factors, leading to protection against ischaemic injury in both cancer cells as well as the developing placenta. In this dissertation, we report that the three master regulators of the UPR, IRE1α, PERK and ATF6α, mediate transcriptional regulation of VEGFA under ER stress in cancer cells. Inactivation of any of the three master regulators leads to attenuation of VEGFA expression under ER stress. We show that IRE1α is able to regulate VEGFA through its downstream transcription factor XBP1 which activates the VEGFA promoter. IRE1α mediated VEGFA regulation is also essential for normal development of labyrinthine trophoblast cells in the placenta. ATF6α also regulates VEGFA via its promoter. PERK is able to activate VEGFA by preferential activation of its downstream effector, ATF4, which binds intron 1 of the VEGFA gene. Thus our work reveals a twopronged differential regulatory action of the UPR sensors on VEGFA gene expression. This work suggests that a fully active UPR is essential for VEGFA upregulation under ER stress. All three regulators are required in cancer cells for normal VEGFA expression. This tight regulation of VEGFA by the UPR presents a wonderful opportunity for therapeutic intervention into angiogenic growth of tumors.
164

Buněčné mechanizmy regulace kanálu TRPA1 / Cellular mechanisms of TRPA1 channel regulation

Barvíková, Kristýna January 2020 (has links)
TRPA1 is a thermosensitive ion channel from the ankyrin subfamily of Transient Receptor Potential (TRP) receptors. These proteins play essential roles in the transduction of wide variety of environmental and endogenous signals. TRPA1, which is abundantly expressed in primary nociceptive neurons, is an important transducer of various noxious and irritant stimuli and is also involved in the detection of temperature changes. Similarly to other TRP channels, TRPA1 is comprised of four subunits, each with six transmembrane segments (S1-S6), flanked by the cytoplasmic N- and C-terminal ends. In native tissues, TRPA1 is supposed to be regulated by multiple phosphorylation sites that underlie TRPA1 activity under physiological and various pathophysiological conditions. Using mutational approach, we predicted and explored the role of potential phosphorylation sites for protein kinase C in TRPA1 functioning. Our results identify candidate residues, at which phosho-mimicking mutations affected the channel's ability to respond to voltage and chemical stimuli, whereas the phospho-null mutations to alanine or glycine did not affect the channel activation. Particularly, we identify the serine 602 within the N-terminal ankyrin repeat domain 16, the substitution of which to aspartate completely abolished the TRPA1...
165

The Role of Rip2 Protein in the Nod Mediated Innate Immune Response: A Dissertation

Yang, Yibin 16 April 2010 (has links)
The Rip2 kinase contains a caspase recruitment domain (CARD) and has been implicated in the activation of the transcriptional factor NF-кB downstream of Nod-like receptors. However, how Rip2 mediates innate immune responses is still largely unclear. We show that Rip2 and IKK-γ become stably polyubiquitinated upon treatment of cells with the Nod2 ligand, muramyl dipeptide. We demonstrate a requirement for the E2 conjugating enzyme Ubc13, the E3 ubiquitin ligase Traf6 and the ubiquitin activated kinase Tak1 in Nod2-mediated NF-кB activation. We also show that M. tuberculosisinfection stimulates Rip2 polyubiquitination. Collectively, this study revealed that the Nod2 pathway is ubiquitin regulated and that Rip2 employs a ubiquitin-dependent mechanism to achieve NF-кB activation. We also demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway. We show that upon Mtb infection, Nod2 recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which depends entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to Mycobacteria, perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
166

mTORC2 Promotes Lipid Storage and Suppresses Thermogenesis in Brown Adipose Tissue in Part Through AKT-Independent Regulation of FoxO1: A Dissertation

Hung, Chien-Min 23 October 2016 (has links)
Recent studies suggest adipose tissue plays a critical role in regulating whole body energy homeostasis in both animals and humans. In particular, activating brown adipose tissue (BAT) activity is now appreciated as a potential therapeutic strategy against obesity and metabolic disease. However, the signaling circuits that coordinate nutrient uptake and BAT function are poorly understood. Here, I investigated the role of the nutrient-sensing mTOR signaling pathway in BAT by conditionally deleting Rictor, which encodes an essential component of mTOR Complex 2 (mTORC2) either in brown adipocyte precursors or mature brown adipocytes. In general, inhibiting BAT mTORC2 reduces glucose uptake and de novo lipogenesis pathways while increases lipid uptake and oxidation pathways indicating a switch in fuel utilization. Moreover, several key thermogenic factors (Ucp1, Pgc1α, and Irf4) are elevated in Rictor-deficient BAT, resulting in enhanced thermogenesis. Accordingly, mice with mTORC2 loss in BAT are protected from HFD-induced obesity and metabolic disease at thermoneutrality. In vitro culture experiments further suggest that mTORC2 cell-autonomously regulates the BAT thermogenic program, especially Ucp1 expression, which depends on FoxO1 activity. Mechanistically, mTORC2 appears to inhibit FoxO1 by facilitating its lysine-acetylation but not through the canonical AKT-mediated phosphorylation pathway. Finally, I also provide evidence that β-adrenergic signaling which normally triggers thermogenesis also induces FoxO1 deacetylation in BAT. Based on these data, I propose a model in which mTORC2 functions in BAT as a critical signaling hub for coordinating nutrient uptake, fuel utilization, and thermogenic gene expression. These data provide a foundation for future studies into the mTORC2-FoxO1 signaling axis in different metabolic tissues and physiological conditions.
167

Role of the Yeast Ste20 Protein Kinase Ortholog Map4k4 in Adipose Tissue Function: A Dissertation

Guntur, Kalyani V. P. 10 February 2011 (has links)
Obesity has increased globally in epidemic proportions and as have the associated disorders. Insulin resistance that could further lead to type 2 diabetes is a major obesity associated dysfunction. Studies using insulin resistant mouse models and observations from human subjects exhibiting insulin resistance provide evidence for ectopic lipid deposition in organs like liver, muscle and heart as one of the major risk factors for developing insulin resistance. These observations suggest that deregulated adipose function to sequester and store excess energy as fat, could lead to insulin resistance. Furthermore, several studies have demonstrated adipose tissue dysfunction leading to inflammation and related syndromes. Interestingly, a mouse model with transgenic expression of glucose transporter in the adipose tissue exhibited improved glucose tolerance and increased insulin sensitivity despite development of obesity, upon high fat feeding. Thus mechanisms that improve adipose function could alleviate insulin resistance and associated diseases. Mitogen activated protein kinase kinase kinase kinase 4 (MAP4K4) was identified in our laboratory as a negative regulator of adipocyte function. Interestingly, siRNA mediated knockdown of MAP4K4 promoted PPARγ protein expression. Additionally, silencing of MAP4K4 increased adipocyte triglyceride content. Because MAP4K4 is a negative regulator of PPARγ expression and adipocyte function, understanding the mechanism by which MAP4K4 regulates PPARγ expression is of interest. Thus, for the first part of this thesis, I characterized the signaling pathways utilized by MAP4K4 to regulate PPARγ expression in cultured adipocytes. Here I show that MAP4K4 regulates PPARγ expression through regulation of its protein translation. siRNA mediated MAP4K4 gene silencing stimulated PPARγ protein synthesis without changing its mRNA transcription or its protein degradation. This increase in PPARγ protein translation was due to an increase in the activity of mammalian target of rapamycin (mTOR). The increase in PPARγ protein expression mediated by mTOR activation was a specific effect of the 4E-BP1 phosphorylation that leads to its inactivation and was not a general increase in mTOR activity towards all of its substrates. Finally, adenovirus mediated over expression of MAP4K4 inhibited mTOR activation, and suppressed PPARγ protein translation. For the second part of this thesis, I assessed the role of MAP4K4 in adipocytes in vivo. To accomplish this, a lentivirus mediated shRNA construct was generated to attenuate MAP4K4 expression selectively in the mouse adipose tissue. First we demonstrate that the MAP4K4 shRNA construct is able to efficiently silence the expression of MAP4K4 in vitro when co-expressed with Cre recombinase. Furthermore, we show that following modification of the lentiviral conditional vector that was introduced into a mouse embryo at one cell stage, and crossing the resulting founders with aP2-Cre mice, adipose tissue specific MAP4K4 gene silencing was achieved. Moreover, shRNA mediated gene silencing is a faster and an inexpensive means of achieving tissue specific gene knockdown relative to the available traditional gene knockout approaches. Utilizing these adipose specific MAP4K4 gene knockdown mice, I reveal that MAP4K4 silencing enhanced fat mass as well as PPARγ expression significantly. This is accompanied by improved whole body insulin sensitivity. Furthermore, when challenged with high fat diet, adipose-specific MAP4K4 silenced mice exhibit enhanced adiposity with decreased lean mass. Moreover, adipocyte cell size and triglyceride content are significantly increased. Interestingly, despite increased adiposity, hepatic insulin sensitivity is significantly improved leading to decreased glucose output. Thus MAP4K4 is an important regulator of adipocyte function that mediates whole body glucose homeostasis, through a mechanism that is yet to be identified.
168

Regulation of DNA Replication Origins in Fission Yeast: A Dissertation

Kommajosyula, Naveen 03 August 2009 (has links)
Cells need to complete DNA replication in a timely and error-free manner. To ensure that replication is completed efficiently and in a finite amount of time, cells regulate origin firing. To prevent any errors from being transmitted to the next generation, cells have the checkpoint mechanism. The S-phase DNA damage slows replication to allow the cell to repair the damage. The mechanism of replication slowing by the checkpoint was not clear in fission yeast, Schizosaccharomyces pombe, at the start of my thesis. The downstream targets of the DNA damage checkpoint in fission yeast were also unclear. I worked on identifying the downstream targets for the checkpoint by studying if Cdc25, a phosphatase, is a target of the checkpoint. Work from our lab has shown that origin firing is stochastic in fission yeast. Origins are also known to be inefficient. Inefficient origins firing stochastically would lead to large stretches of chromosome where no origins may fire randomly leading to long replication times, an issue called the random gap problem. However, cells do not take a long time to complete replication and the process of replication itself is efficient. I focused on understanding the mechanism by which cells complete replication and avoid the random gap problem by attempting to measure the firing efficiency of late origins. Genome-wide origin studies in fission yeast have identified several hundred origins. However, the resolution of these studies can be improved upon. I began a genome-wide origin mapping study using deep sequencing to identify origins at a greater resolution compared to the previous studies. We have extended our origin search to two other Schizosaccharomyces species- S. octosporus and S. japonicus.There have been no origin mapping studies on these fission yeasts and identifying origins in these species will advance the field of replication. My thesis research shows that Cdc25 is not a target of the S-phase DNA damage checkpoint. I showed that DNA damage checkpoint does not target Cdc2-Y15 to slow replication. Based on my preliminary observation, origin firing might be inhibited by the DNA damage checkpoint as a way to slow replication. My efforts to measure the firing efficiency of a late replicating sequence were hindered by potentially unidentified inefficient origins firing at a low rate and replicating the region being studied. Studying the origin efficiency was maybe further complicated by neighboring origins being able to passively replicate the region. To identify origins in recently sequenced Schizosaccharomyces species, we initiated the genome-wide origin mapping. The mapping was also done on S. pombe to identify inefficient origins not mapped by other mapping studies. My work shows that deep sequencing can be used to map origins in other species and provides a powerful tool for origin studies.
169

Role of Protein Kinase Map4k4 in Energy Metabolism: A Dissertation

Danai, Laura V. 29 April 2015 (has links)
Systemic glucose regulation is essential for human survival as low or chronically high glucose levels can be detrimental to the health of an individual. Glucose levels are highly regulated via inter-organ communication networks that alter metabolic function to maintain euglycemia. For example, when nutrient levels are low, pancreatic α-cells secrete glucagon, which signals to the liver to promote glycogen breakdown and glucose production. In times of excess nutrient intake, pancreatic β-cells release insulin. Insulin signals to the liver to suppress hepatic glucose production, and signals to the adipose tissue and the skeletal muscle to take up excess glucose via insulin-regulated glucose transporters. Defects in this inter-organ communication network including insulin resistance can result in glucose deregulation and ultimately the onset of type-2 diabetes (T2D). To identify novel regulators of insulin-mediated glucose transport, our laboratory performed an siRNA-mediated gene-silencing screen in cultured adipocytes and measured insulin-mediated glucose transport. Gene silencing of Mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a Sterile-20-related serine/threonine protein kinase, enhanced insulin-stimulated glucose transport, suggesting Map4k4 inhibits insulin action and glucose transport. Thus, for the first part of my thesis, I explore the role of Map4k4 in cultured adipose cells and show that Map4k4 also represses lipid synthesis independent of its effects on glucose transport. Map4k4 inhibits lipid synthesis in a Mechanistic target of rapamycin complex 1 (mTORC1)- and Sterol regulatory element-binding transcription factor 1 (Srebp-1)-dependent mechanism and not via a c-Jun NH2-terminal kinase (Jnk)-dependent mechanism. For the second part of my thesis, I explore the metabolic function of Map4k4 in vivo. Using mice with loxP sites flanking the Map4k4 allele and a ubiquitously expressed tamoxifen-activated Cre, we inducibly ablated Map4k4 expression in adult mice and found significant improvements in metabolic health indicated by improved fasting glucose and whole-body insulin action. To assess the role of Map4k4 in specific metabolic tissues responsible for systemic glucose regulation, we employed tissue-specific knockout mice to deplete Map4k4 in adipose tissue using an adiponectin-cre transgene, liver using an albumin-cre transgene, and skeletal muscle using a Myf5-cre transgene. Ablation of Map4k4 expression in adipose tissue or liver had no impact on whole body glucose homeostasis or insulin resistance. However, we surprisingly found that Map4k4 depletion in Myf5-positive tissues, which include skeletal muscles, largely recapitulates the metabolic phenotypes observed in systemic Map4k4 knockout mice, restoring obesity-induced glucose intolerance and insulin resistance. Furthermore these metabolic changes were associated with enhanced insulin signaling to Akt in the visceral adipose tissue, a tissue that is nearly devoid of Myf5-positive cells and does not display changes in Map4k4 expression. Thus, these results indicate that Map4k4 in Myf5-positive cells, most likely skeletal muscle cells, inhibits whole-body insulin action and these effects may be mediated via an indirect effect on the visceral adipose tissue. The results presented here provide evidence for Map4k4 as a potential therapeutic target for the treatment of insulin resistance and T2D.
170

La vía canónica PI3K/AKT/mTOR y sus alteraciones en cáncer / The PI3K/AKT/mTOR canonical pathway and its alterations in cancer

Aldecoa, Franklin, Ávila, J. 30 December 2021 (has links)
La vía PI3K/AKT/mTOR participa en múltiples procesos celulares fundamentales para la célula. Algunas mutaciones genéticas de los componentes de esta vía se han asociado a diversas enfermedades humanas: las más importantes son los carcinomas de mama, tiroides y endometrio, el glioblastoma multiforme, el cáncer de próstata y los linfomas. La vía canónica PI3K/AKT/mTOR se ha estudiado ampliamente en los últimos años. Sin embargo, el conocimiento de la complejidad de sus componentes principales y su interrelación con los elementos de otras vías va en aumento. Por ello, es importantes actualizar cada cierto tiempo la información disponible para la comprensión de este mecanismo. Así mismo, se están y se han desarrollado numerosos ensayos con medicinas selectivas en búsqueda de un tratamiento más inteligente para las enfermedades asociadas a alteraciones de esta vía. Por tanto, realizamos una revisión de esta vía de transducción con el objetivo de tener una visión cercana de su funcionamiento, sus alteraciones y enumerar algunas moléculas promisorias para ser utilizadas en futuros tratamientos. / The PI3K/AKT/mTOR pathway is involved in multiple cellular processes which are essential for the cells. Some genetic mutations of the components of this pathway have been associated with various human diseases, the most important of which are breast, thyroid and endometrium carcinomas; glioblastoma multiforme; prostate cancer and lymphomas. The PI3K/AKT/mTOR canonical pathway has been extensively studied in recent years. However, as the complexity of its main components and their correlation with the components of other pathways are increasing, it is important to update from time to time the available information to understand this mechanism. Furthermore, many trials have been conducted with selective medicines aimed to look for a more intelligent treatment for diseases associated with alterations in this pathway. Therefore, we review this transduction pathway to take a close look at its functioning and alterations, and to list some promising molecules for future treatments. / Revisión por pares

Page generated in 0.1051 seconds