• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 40
  • 40
  • 30
  • 17
  • 11
  • 10
  • 10
  • 10
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Surface and subsurface structures of the western Valley and Ridge in Tennessee and geometry and kinematics that permit reconstruction of the Tennessee salient, southern Appalachians

Whisner, Jennifer Kathleen 01 August 2010 (has links)
The southern and central Appalachian foreland fold-thrust belt comprises a series of orogen -scale curves that extend from Alabama to New York. One of these is the Tennessee salient, a foreland-convex curve that extends from Cartersville, Georgia, to Roanoke, Virginia. Development of a kinematic model for deformation in the salient has been hindered by a paucity of penetrative deformation in this generally low temperature, low volume-loss portion of the orogen. Industry seismic reflection lines provide greater resolution of subsurface geometry of both the basement surface and the overlying fold-thrust belt, confirming some previous interpretations and changing others. A series of cross sections based on the seismic reflection data incorporates the improved understanding of basement geometry, as well as new interpretations of fold-thrust belt structures such as a sub-thrust detachment fold along the western margin of the Valley and Ridge, a smaller detachment fold along the Cumberland Escarpment, and a duplex below the Knoxville sheet in southeastern Tennessee. The cross sections, combined with recently published analyses of calcite twin strain and paleomagnetic data around the salient, provide sufficient data to develop a new palinspastic reconstruction method and to propose a kinematic model for development of the salient. The basis of the reconstruction method is, in areas where the front of the indenter is oriented oblique to transport, the maximum shortening direction and particle displacement paths are also oblique to the bulk transport direction. Cross sections, kinematic indicators, and palinspastic reconstructions suggest that the Tennessee salient is a primary arc formed by a combination of uniform displacement in a single direction and transport-parallel simple shear (plane strain), that most major faults formed initially curved in front of the irregularly shaped Blue Ridge-Inner Piedmont indenter, and that transport in the fold-thrust belt may have occurred by plan view movement on networks of minor faults, which permitted forelandward propagation of the curved faults without significant rotation. Although the technique does not provide a unique solution, the resulting palinspastic restoration is kinematically admissible and geometrically reasonable. So, it may improve palinspastic restorations of facies in basins with no vertical axis rotations and minimal penetrative strain. Attachments are in PDF format and may be opened with Adobe Reader™.
12

Geological Evolution of the Supracrustal Palaeoproterozoic Hamrånge Group: A Svecofennian Case Study

Ogenhall, Erik January 2010 (has links)
The work presented in this thesis utilizes several geological methods to investigate the origin and evolution of the supracrustal rocks in the Palaeoproterozoic Hamrånge Group (HG) in the south-central Swedish Svecofennian. The first paper is based on whole-rock geochemistry to show the plate tectonic setting of volcanic rocks within the HG. This indicates that the environment was probably an oceanic volcanic arc. Geochronology, used in paper two, shows that the volcanism was active at 1888±6 Ma and that the sediments forming the stratigraphically overlying quartzite were deposited after 1855±10 Ma, with provenance ages overlapping both the volcanic rocks and the 1.86-1.84 Ga continental margin Ljusdal granitoids. In the third paper, thermobarometry was applied to samples from the HG, the migmatitic Ockelbo sub-domain to the south, and the 1.81 Ga Hagsta Gneiss Zone (HGZ) that separate these two units. The results show distinct differences in the metamorphic conditions that have affected the HG and the Ockelbo sub-domain, supporting previous interpretations that the HGZ is an important crustal structure, possibly a terrane or domain boundary. Paper four deals with the structural geology of the Hamrånge area. The study shows that the volcanic rocks and the underlying mica schist have been subjected to three deformation episodes (D1-D3), while the uppermost quartzite was most likely only affected by D2 and D3. While structures related to D1 are rarely seen, D2 resulted in a penetrative foliation, strong lineations and NW-vergent folding and thrusting. D3 is a result of a N-S compression that formed regional E-W folds and steep, ca. NW-SE shear zones, e.g. the HGZ. The results presented in this thesis, integrated with previously published data, outline a model for the geological evolution of the Hamrånge area: At 1.89 Ga a volcanic arc formed that subsequently collided with a continental margin resulting in the first deformation episode, D1, and probably a metamorphic event. This was possibly followed by an extensional period, after 1855±10 Ma, forming a basin that accumulated sediments later to form the quartzite stratigraphically on top of the volcanic rocks. The second deformation episode, D2, formed a fold-thrust belt when the supracrustal HG was thrusted to the NW, on top of the 1.86-1-84 Ga Ljusdal Domain. Flattening and a second metamorphic period followed this thickening of the crust. The last ductile deformation, D3, caused by regional tectonic forces, resulted in F3-folds that matured into ca. 1.8 Ga large-scale, steep shear zones transecting the Fennoscandian Shield.
13

The Ten Stone Ranges Structural Complex of the central Mackenzie Mountains fold-and-thrust belt: a structural analysis with implications on the Plateau Fault and regional detachment level

MacDonald, Justin January 2009 (has links)
The Cordilleran Orogen affected majority of the western margin of ancient continental North America in the Cretaceous, which is well recorded in the Foreland Belt. The Mackenzie Mountains fold-and-thrust belt is located primarily in the westernmost Northwest Territories and easternmost Yukon Territory in northern Canada. The mountains are often described as the northern extension of the Rocky Mountains to the south which are one of the world’s best examples of a thin-skinned fold-and-thrust belt. Within the Mackenzie Mountains, Neo-Proterozoic through Cretaceous sedimentary rocks record the Laramide aged deformation, with a range of structures that vary in size and complexity. Previous mapping by the Geological Survey of Canada produced a series of reconnaissance maps that are still in use today, many of which are available in only black and white. This study is focused on a part of the 1:250 000 scale NTS 106A Mount Eduni map sheet from Geological Survey of Canada reconnaissance mapping in 1974. The study involved re-mapping a large panel at 1:50 000 scale to better understand the structural geometry, regional shortening and the depth of the underlying detachment level. Through systematic geologic mapping and structural analyses, this study presents a balanced regional cross-section, numerous serial cross-sections and a detailed geologic map of the study area, the Ten Stone Ranges Structural Complex. The serial cross-sections were used to define the geometry of the Cache Lake Fold, a large fault-bend-fold system that involves a folded thrust fault and complicated subsurface geometry. In addition to this, the sections confirmed that the TSRSC is a transfer zone whereby a series of thrust faults and décollement folds are responsible for much of the displacement and shortening in the Mount Eduni map sheet. The balanced regional cross-section was constructed across a number of key structural elements, in particular the Plateau Fault, a regional structure with a > 250 kilometer strike length and the subject of much debate as to its geometry. In addition to this structure, the cross-section transects the Cache Lake Fold and the Shattered Range Anticline, a regional box shaped anticline that was used for a “depth to detachment” calculation. By examining the regional detachment level estimated from the balanced cross-section and calculating the detachment depth using the Shattered Range Anticline the detachment depth was found to be – 11.3 kilometers below the current erosional level. This study is the first structural analyses of the Mount Eduni map sheet, particularly the Ten Stone Ranges Structural Complex, and has resulted in an estimate of the detachment depth for the area, a shortening estimate of > 7 kilometers across the 50 kilometer line of section and a displacement estimate for the Plateau Thrust of > 20 kilometers.
14

The Ten Stone Ranges Structural Complex of the central Mackenzie Mountains fold-and-thrust belt: a structural analysis with implications on the Plateau Fault and regional detachment level

MacDonald, Justin January 2009 (has links)
The Cordilleran Orogen affected majority of the western margin of ancient continental North America in the Cretaceous, which is well recorded in the Foreland Belt. The Mackenzie Mountains fold-and-thrust belt is located primarily in the westernmost Northwest Territories and easternmost Yukon Territory in northern Canada. The mountains are often described as the northern extension of the Rocky Mountains to the south which are one of the world’s best examples of a thin-skinned fold-and-thrust belt. Within the Mackenzie Mountains, Neo-Proterozoic through Cretaceous sedimentary rocks record the Laramide aged deformation, with a range of structures that vary in size and complexity. Previous mapping by the Geological Survey of Canada produced a series of reconnaissance maps that are still in use today, many of which are available in only black and white. This study is focused on a part of the 1:250 000 scale NTS 106A Mount Eduni map sheet from Geological Survey of Canada reconnaissance mapping in 1974. The study involved re-mapping a large panel at 1:50 000 scale to better understand the structural geometry, regional shortening and the depth of the underlying detachment level. Through systematic geologic mapping and structural analyses, this study presents a balanced regional cross-section, numerous serial cross-sections and a detailed geologic map of the study area, the Ten Stone Ranges Structural Complex. The serial cross-sections were used to define the geometry of the Cache Lake Fold, a large fault-bend-fold system that involves a folded thrust fault and complicated subsurface geometry. In addition to this, the sections confirmed that the TSRSC is a transfer zone whereby a series of thrust faults and décollement folds are responsible for much of the displacement and shortening in the Mount Eduni map sheet. The balanced regional cross-section was constructed across a number of key structural elements, in particular the Plateau Fault, a regional structure with a > 250 kilometer strike length and the subject of much debate as to its geometry. In addition to this structure, the cross-section transects the Cache Lake Fold and the Shattered Range Anticline, a regional box shaped anticline that was used for a “depth to detachment” calculation. By examining the regional detachment level estimated from the balanced cross-section and calculating the detachment depth using the Shattered Range Anticline the detachment depth was found to be – 11.3 kilometers below the current erosional level. This study is the first structural analyses of the Mount Eduni map sheet, particularly the Ten Stone Ranges Structural Complex, and has resulted in an estimate of the detachment depth for the area, a shortening estimate of > 7 kilometers across the 50 kilometer line of section and a displacement estimate for the Plateau Thrust of > 20 kilometers.
15

Fold-and-thrust belt deformation of the Hongliuhe Group: a Permian tectonic closure record of the Central Asian Orogenic Belt, NW China

Cleven, Nathan January 2011 (has links)
The Early Permian strata of the Hongliuhe Group, NW China, experienced a thin-skinned fold-and-thrust belt style of deformation that recorded the final stages of amalgamation of the Beishan orogenic collage, a part of the Central Asian Orogenic Belt. The Hongliuhe Group was syn-orogenically deposited on an undetermined foreland, with the Mazongshan arc terrane acting as the hinterland. In this study results from detailed mapping combined with a regional analysis elucidate involvement of a northward-dipping subduction system with the collision. Well-preserved fold-and-thrust belt style deformation mapped in the upper stratigraphy of the Hongliuhe Group exhibits dominantly south-southeast verging structure, including shear folding, low-angle thrust ramping, imbrication and duplexing. Restoration of a portion of a mapped outcrop-scale cross-section estimates the accommodation of a minimum of 24% shortening. Lower stratigraphy shows discrete, steeper, north-over-south dip-slip ductile shear zones that bound packages of less deformed Hongliuhe Group strata. Fault displacement is considered to have been prolonged enough to juxtapose basal formations in northerly hangingwalls against upper formations in southerly footwalls. Faulting is closely associated with the creation of large-scale brittle-ductile eye-fold structures that are postulated to be sheath folds. The most examined and mapped structure, 16km wide, is a synclinal structure with axes plunging steeply towards its center. The ellipticity of the exposed bedding traces increases towards the center of the eye-fold, implying a structural relationship with metamorphic shear zones. Except for large-scale folding, the bulk of its strata remain relatively undeformed and have preserved primary soft-sediment deformation structures indicating younging towards the center on both limbs of the synclinal structure. Stratigraphic reconstruction of the Hongliuhe Group that considers the significant faulting shows that the Group's basal conglomerates unconformably overlie a Late-Carboniferous volcanic assemblage. The clast lithotypes of the conglomeratic successions change from polymictic metamorphic rocks at the base to monomictic granitoid clasts mid-section, showing the gradual unroofing sequence of the provenance. The stratigraphic reconstruction shows a general fining upward sequence, transitioning from terrestrial to nearshore marine depositional environments that, and in conjunction with the conglomeratic successions, suggests that the tectonic setting for deposition of the Hongliuhe Group is a foreland basin. Considering the deformation styles reported in this study, the Hongliuhe Group is interpreted to be a foreland fold-and-thrust belt. Stratigraphic reconstruction of the Hongliuhe Group that considers the significant faulting shows that the Group’s basal conglomerates unconformably overlie a Late Carboniferous volcanic assemblage. The clast lithotypes of the conglomeratic successions change from polymictic metamorphic rocks at the base to monomictic granitoid mid-section, showing the gradual unroofing sequence of the provenance. The stratigraphic reconstruction shows a general fining upward sequence through nearshore depositional environments that, and in conjunction with the conglomeratic successions, give interpretation that the tectonic setting for deposition of the Hongliuhe Group is a foreland basin. Considering the deformation styles reported in this study the Hongliuhe Group is interpreted to be a foreland fold-and-thrust belt.
16

PALINSPASTIC RECONSTRUCTION AROUND A THRUST BELT RECESS: AN EXAMPLE FROM THE APPALACHIAN THRUST BELT IN NORTHWESTERN GEORGIA

Cook, Brian Stephen 01 January 2010 (has links)
In a well-defined subrecess in the Appalachian thrust belt in northwestern Georgia, two distinct regional strike directions intersect at approximately 50°. Fault intersections and interference folds enable tracing of both structural strikes. Around the subrecess, tectonically thickened weak stratigraphic layers—shales of the Cambrian Conasauga Formation—accommodated ductile deformation associated with the folding and faulting of the overlying Cambrian–Ordovician regional competent layer. The structures in the competent layer are analogous to those over ductile duplexes (mushwads) documented along strike to the southwest in Alabama. The intersection and fold interference exemplify a long-standing problem in volume balancing of palinspastic reconstructions of sinuous thrust belts. Cross sections generally are constructed perpendicular to structural strike, parallel to the assumed slip direction. An array of cross sections around a structural bend may be restored and balanced individually; however, restorations perpendicular to strike across intersecting thrust faults yield an imbalance in the along-strike lengths of frontal ramps. The restoration leads to a similar imbalance in the surface area of a stratigraphic horizon, reflecting volume imbalance in three dimensions. The tectonic thickening of the weak-layer shales is evident in palinspastically restored cross sections, which demonstrate as much as 100% increase in volume over the restored-state cross sections. The cause of the surplus shale volume is likely prethrusting deposition of thick shale in a basement graben that was later inverted. The volume balance of the ductile duplex is critical for palinspastic reconstruction of the recess, and for the kinematic history and mechanics of the ductile duplex.
17

Fold-and-thrust belt deformation of the Hongliuhe Group: a Permian tectonic closure record of the Central Asian Orogenic Belt, NW China

Cleven, Nathan January 2011 (has links)
The Early Permian strata of the Hongliuhe Group, NW China, experienced a thin-skinned fold-and-thrust belt style of deformation that recorded the final stages of amalgamation of the Beishan orogenic collage, a part of the Central Asian Orogenic Belt. The Hongliuhe Group was syn-orogenically deposited on an undetermined foreland, with the Mazongshan arc terrane acting as the hinterland. In this study results from detailed mapping combined with a regional analysis elucidate involvement of a northward-dipping subduction system with the collision. Well-preserved fold-and-thrust belt style deformation mapped in the upper stratigraphy of the Hongliuhe Group exhibits dominantly south-southeast verging structure, including shear folding, low-angle thrust ramping, imbrication and duplexing. Restoration of a portion of a mapped outcrop-scale cross-section estimates the accommodation of a minimum of 24% shortening. Lower stratigraphy shows discrete, steeper, north-over-south dip-slip ductile shear zones that bound packages of less deformed Hongliuhe Group strata. Fault displacement is considered to have been prolonged enough to juxtapose basal formations in northerly hangingwalls against upper formations in southerly footwalls. Faulting is closely associated with the creation of large-scale brittle-ductile eye-fold structures that are postulated to be sheath folds. The most examined and mapped structure, 16km wide, is a synclinal structure with axes plunging steeply towards its center. The ellipticity of the exposed bedding traces increases towards the center of the eye-fold, implying a structural relationship with metamorphic shear zones. Except for large-scale folding, the bulk of its strata remain relatively undeformed and have preserved primary soft-sediment deformation structures indicating younging towards the center on both limbs of the synclinal structure. Stratigraphic reconstruction of the Hongliuhe Group that considers the significant faulting shows that the Group's basal conglomerates unconformably overlie a Late-Carboniferous volcanic assemblage. The clast lithotypes of the conglomeratic successions change from polymictic metamorphic rocks at the base to monomictic granitoid clasts mid-section, showing the gradual unroofing sequence of the provenance. The stratigraphic reconstruction shows a general fining upward sequence, transitioning from terrestrial to nearshore marine depositional environments that, and in conjunction with the conglomeratic successions, suggests that the tectonic setting for deposition of the Hongliuhe Group is a foreland basin. Considering the deformation styles reported in this study, the Hongliuhe Group is interpreted to be a foreland fold-and-thrust belt. Stratigraphic reconstruction of the Hongliuhe Group that considers the significant faulting shows that the Group’s basal conglomerates unconformably overlie a Late Carboniferous volcanic assemblage. The clast lithotypes of the conglomeratic successions change from polymictic metamorphic rocks at the base to monomictic granitoid mid-section, showing the gradual unroofing sequence of the provenance. The stratigraphic reconstruction shows a general fining upward sequence through nearshore depositional environments that, and in conjunction with the conglomeratic successions, give interpretation that the tectonic setting for deposition of the Hongliuhe Group is a foreland basin. Considering the deformation styles reported in this study the Hongliuhe Group is interpreted to be a foreland fold-and-thrust belt.
18

Cretaceous-Paleogene Low Temperature History of the Southwestern Province, Svalbard, Revealed by (U-Th)/He Thermochronometry: Implications for High Arctic Tectonism

Barnes, Christopher January 2016 (has links)
The High Arctic has been a complex region of collisional and extensional tectonism through the Mesozoic and Cenozoic. Svalbard, the sub-aerial exposure of the northwestern Barents Shelf, is an excellent natural laboratory investigating for High Arctic tectonism. Using apatite and zircon (U-Th)/He low-temperature thermochronometry combined with geological constraints, we resolve Cretaceous through Paleogene time-temperature histories for four regions of the Southwestern Province. Our results indicate a temperature gradient from south to north of ~185°C to >200°C, respectively, as a consequence of sedimentary burial and elevated geothermal gradient ( 45°C/km) from High Arctic Large Igneous Province activity. Late Cretaceous cooling affected all regions during regional exhumation related to initial rifting in the Eurasian Basin. During Eurekan tectonism: 1) our models indicate a heating event (55-47 Ma) characterized by overthrusting and a lack of erosion of the West Spitsbergen Fold-and-Thrust Belt, with Central Basin sediments derived from northern Greenland, followed by 2) a subsequent cooling event (47-34 Ma) corresponding to a shift in tectonic regime from compression to dextral strike-slip kinematics; exhumation of the WSFTB coincided with strikeslip tectonics.
19

3D Regional Geological Modelling in Structurally Complex Environments: Gaining Geological Insight for the Northern Labrador Trough

Montsion, Rebecca January 2017 (has links)
3D geological modelling is becoming an effective tool for communication and development of geological understanding. This is due to increased computer performance and availability of improved geological modelling software. 3D geological modelling technology has reached the stage where it can be implemented in regionally extensive and geologically complex settings, with the ability to achieve geological insight beyond what could otherwise have been gained through 2D investigations alone. Insight includes better constrained fault and horizon topologies, refined fold geometries, improved understanding of tectonic processes, and characterization of deformational events. By integrating field observations, aeromagnetic maps, and 3D modelling techniques in the northern Labrador Trough, a regionally extensive and structurally complex geological environment, regional faults geometries and topological relationships were refined. Additionally, a new fault, the Ujaralialuk Fault, and two shear zones were interpreted. During modelling, several challenges were identified, including higher computational costs for regionally extensive models, sparse 3D constraints, algorithmic limitations related to complex geometries, and the large investment of time and effort required to produce a single model solution. A benefit of this investigation is that new insight was also gained for a greenfields region which may assist future exploration efforts. Developing 3D models in challenging environments allows for better definition of future workflow requirements, algorithm enhancements, and knowledge integration. These are needed to achieve a geologically reasonable modelling standard and gain insight for poorly constrained geological settings.
20

Quantifying strain in analogue models simulating fold-and-thrust belts using magnetic fabric analysis

Schöfisch, Thorben January 2021 (has links)
Applying the anisotropy of magnetic susceptibility to analogue models provides detailed insights into the strain distribution and quantification of deformation within contractional tectonic settings like fold-and-thrust belts (FTBs). Shortening in FTBs is accommodated by layer-parallel shortening, folding, and thrusting. The models in this research reflect the different deformation processes and the resulting magnetic fabric can be attributed to thrusting, folding and layer-parallel shortening. Thrusting develops a magnetic foliation parallel to the thrust surface, whereas folding and penetrative strain develop a magnetic lineation perpendicular to the shorting direction but parallel to the bedding. These fabric types can be observed in the first model of this study, which simulated a FTB shortened above two adjacent décollements with different frictional properties. The different friction coefficients along the décollements have not only an effect on the geometric and kinematic evolution of a FTB, but also on the strain distribution and magnitude of strain within the belt.  The second series of models performed in this study show the development of a thrust imbricate and the strain distribution across a single imbricate in more detail. Three models, with similar setup but different magnitudes of bulk shortening, show strain gradients by gradual changes in principal axes orientations and decrease in degree of anisotropy with decreasing distance to thrusts and kinkzones. These models show that at the beginning of shortening, strain is accommodated mainly by penetrative strain. With further shortening, formation of thrusts and kinkzones overprint the magnetic fabric locally and the degree of anisotropy is decreasing within the deformation zones. At thrusts, an overprint of the magnetic fabric prior deformation towards a magnetic foliation parallel to the thrust surfaces can be observed. A rather complex interplay between thrusting and folding can be analysed in the kinkzones. In general, this thesis outlines the characteristics of magnetic fabric observed in FTBs, relates different types of magnetic fabric to different processes of deformation and provides insights into the strain distribution of FTBs.

Page generated in 0.1106 seconds