• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 2
  • 1
  • Tagged with
  • 40
  • 18
  • 13
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Convective Cores in Continental and Oceanic Thunderstorms: Strength, Width, and Dynamics

McCarthy, Alexander Michael 11 October 2017 (has links)
No description available.
32

Relating Multi-Radar/Multi-Sensor (MRMS) and Dual-Polarization Products to Lightning and Thunderstorm Severity Potential

Thiel, Kevin C., Thiel 05 October 2018 (has links)
No description available.
33

Caracterização hidrodinâmica e elétrica de sistemas convectivos de mesoescala / Hydrodinamical and Electrical Characteristics of Mesoscale Convective Systems

Beneti, Cesar Augustus Assis 17 October 2012 (has links)
A rotina operacional de monitoramento e previsão de tempo tem mudado bastante nos últimos anos. Além de informações convencionais existentes, que são bem conhecidas nos centros operacionais, os dados obtidos por sensoriamento remoto através de satélites, radares meteorológicos e sensores de detecção de descargas atmosféricas fornecem informações vitais e em tempo real, sendo estas as principais ferramentas para a detecção e previsão de tempestades severas. Na America do Sul, em especial o nordeste da Argentina, Paraguai, Uruguai e o sul do Brasil são regiões particularmente sujeitas a ocorrência de eventos severos (precipitação intensa, granizo, enchentes e intensa atividade elétrica, além de vendavais e tornados). No sul do Brasil, a distribuição mensal de chuvas é bastante uniforme, porém com alta variabilidade diária associada, principalmente, à passagem das frentes frias pela região e aos Sistemas Convectivos de Mesoescala, que se formam nessa região. A principal atividade econômica nessa região do Brasil é a agroindústria, diretamente dependente da distribuição da precipitação para a produção, como também susceptível aos fenômenos meteorológicos adversos associados. Além desta atividade, a região sul é responsável pela produção de, aproximadamente, 35% de toda a energia elétrica utilizada no país. O objetivo principal desta pesquisa foi estudar os aspectos espaciais e temporais da atividade elétrica durante os eventos de Sistemas Convectivos de Mesoescala (SCM) e examinar as possíveis relações entre o ambiente no qual essas tempestades se desenvolvem e as características elétricas e hidrometeorológicas desses, conforme observados por um radar meteorológico Doppler, e uma rede de detecção de relâmpagos, principalmente, e também com informações de satélites meteorológicos, dados de superfície e análises de modelos numéricos. Os resultados deste trabalho mostraram a importância das características dinâmicas na região, em especial a presença dos jatos em baixos níveis com a convergência de umidade na região para a organização dos eventos de SCM, como também a distribuição dos regimes de precipitação com características distintas de estrutura de refletividade observada por radar e também de atividade elétrica durante os eventos analisados. Espera-se que os resultados deste trabalho ajudem a entender melhor a relação dos sistemas convectivos de mesoescala e sua estrutura e evolução, como observados e detectados pelos sistemas remotos de monitoramento hidrometeorológico, além de um melhor entendimento e aperfeiçoamento de nossas habilidades de análise e previsão de tempo relacionados a esses eventos severos com precipitação intensa. / The operational routine in weather monitoring and forecasting has changed a lot in the past years. Besides conventional information, well known in operational centers, data from remote sensing such as satellite, weather radars and lightning detection network provide vital information in real time, as the main tools for severe weather detection and forecasting In South America, specially northeastern Argentina, Paraguay, Uruguay and southern Brazil are regions prone to severe weather (intense precipitation, hail, floddings, lightning, tornadoes and gust winds). In the South of Brazil, monthly precipitation distribution is very uniform, but with daily variability associated, mostly, with the passage of cold fronts through the region and to mesoscale convective systems, forming in this area. The major economical activity in this region of Brazil is agroindustry, directly dependent of precipitation distribution for production and also susceptible to diverse meteorological events associated with it. Besides this activity, the south region is responsible for the production of, approximately, 35\\% of all electric energy used in the country. The main goal of this research was to study spatial and temporal aspects of the electrical activity during MCS events, as observed by a weather radar and a network of ligthning detection sensors in the south of Brazil, and to examine possible relations between the environment in which these storms develop and electrical characteristics of these weather systems, using weather radar, lightning, satellite and numerical model information. The results of this work showed the importance of the dynamic characteristics in the regial, specially the presence of low level jets and humidity convergence in the region to organize MCS events, as well as a distribution of precipitation regimes whith distinct characteristics of radar reflectivity and electrical activity during the analysed events. With this work we expect to contribute with the understanding of the relation of MCS structure and evolution as observed and detected by hydrometeorological monitoring systems and to improve the comprehension and ability to analyse and forecast such severe weather systems.
34

Caracterização hidrodinâmica e elétrica de sistemas convectivos de mesoescala / Hydrodinamical and Electrical Characteristics of Mesoscale Convective Systems

Cesar Augustus Assis Beneti 17 October 2012 (has links)
A rotina operacional de monitoramento e previsão de tempo tem mudado bastante nos últimos anos. Além de informações convencionais existentes, que são bem conhecidas nos centros operacionais, os dados obtidos por sensoriamento remoto através de satélites, radares meteorológicos e sensores de detecção de descargas atmosféricas fornecem informações vitais e em tempo real, sendo estas as principais ferramentas para a detecção e previsão de tempestades severas. Na America do Sul, em especial o nordeste da Argentina, Paraguai, Uruguai e o sul do Brasil são regiões particularmente sujeitas a ocorrência de eventos severos (precipitação intensa, granizo, enchentes e intensa atividade elétrica, além de vendavais e tornados). No sul do Brasil, a distribuição mensal de chuvas é bastante uniforme, porém com alta variabilidade diária associada, principalmente, à passagem das frentes frias pela região e aos Sistemas Convectivos de Mesoescala, que se formam nessa região. A principal atividade econômica nessa região do Brasil é a agroindústria, diretamente dependente da distribuição da precipitação para a produção, como também susceptível aos fenômenos meteorológicos adversos associados. Além desta atividade, a região sul é responsável pela produção de, aproximadamente, 35% de toda a energia elétrica utilizada no país. O objetivo principal desta pesquisa foi estudar os aspectos espaciais e temporais da atividade elétrica durante os eventos de Sistemas Convectivos de Mesoescala (SCM) e examinar as possíveis relações entre o ambiente no qual essas tempestades se desenvolvem e as características elétricas e hidrometeorológicas desses, conforme observados por um radar meteorológico Doppler, e uma rede de detecção de relâmpagos, principalmente, e também com informações de satélites meteorológicos, dados de superfície e análises de modelos numéricos. Os resultados deste trabalho mostraram a importância das características dinâmicas na região, em especial a presença dos jatos em baixos níveis com a convergência de umidade na região para a organização dos eventos de SCM, como também a distribuição dos regimes de precipitação com características distintas de estrutura de refletividade observada por radar e também de atividade elétrica durante os eventos analisados. Espera-se que os resultados deste trabalho ajudem a entender melhor a relação dos sistemas convectivos de mesoescala e sua estrutura e evolução, como observados e detectados pelos sistemas remotos de monitoramento hidrometeorológico, além de um melhor entendimento e aperfeiçoamento de nossas habilidades de análise e previsão de tempo relacionados a esses eventos severos com precipitação intensa. / The operational routine in weather monitoring and forecasting has changed a lot in the past years. Besides conventional information, well known in operational centers, data from remote sensing such as satellite, weather radars and lightning detection network provide vital information in real time, as the main tools for severe weather detection and forecasting In South America, specially northeastern Argentina, Paraguay, Uruguay and southern Brazil are regions prone to severe weather (intense precipitation, hail, floddings, lightning, tornadoes and gust winds). In the South of Brazil, monthly precipitation distribution is very uniform, but with daily variability associated, mostly, with the passage of cold fronts through the region and to mesoscale convective systems, forming in this area. The major economical activity in this region of Brazil is agroindustry, directly dependent of precipitation distribution for production and also susceptible to diverse meteorological events associated with it. Besides this activity, the south region is responsible for the production of, approximately, 35\\% of all electric energy used in the country. The main goal of this research was to study spatial and temporal aspects of the electrical activity during MCS events, as observed by a weather radar and a network of ligthning detection sensors in the south of Brazil, and to examine possible relations between the environment in which these storms develop and electrical characteristics of these weather systems, using weather radar, lightning, satellite and numerical model information. The results of this work showed the importance of the dynamic characteristics in the regial, specially the presence of low level jets and humidity convergence in the region to organize MCS events, as well as a distribution of precipitation regimes whith distinct characteristics of radar reflectivity and electrical activity during the analysed events. With this work we expect to contribute with the understanding of the relation of MCS structure and evolution as observed and detected by hydrometeorological monitoring systems and to improve the comprehension and ability to analyse and forecast such severe weather systems.
35

The Influence of the Wichita Mountain Range on Convection Initiation of Tornado and Large Hail Producing Supercells in Central Oklahoma

Aiena, Christine N. 25 September 2018 (has links)
No description available.
36

Predicting the development of weather phenomena that influence aviation at Abu Dhabi International Airport

De Villiers, Michael Pierre 08 February 2010 (has links)
The United Arab Emirates is a new country that has had little time to accumulate a scientific heritage. Meteorologically researched and documented weather material for forecasters is virtually non-existent and that available is fragmented and anecdotal. The thesis tackles this problem by identifying weather phenomena significant to aviation in the Emirates and particularly at Abu Dhabi International Airport (ADIA). Mechanisms responsible for their development are described and applicable forecasting rules and principles are derived. Surface and upper air observation data at ADIA from 1983 to 2002 were analysed to identify the weather phenomena, their associated weather systems and for statistical analyses. When relevant, observation data at Al Ain was also used. Post-processed numerical weather prediction Global Forecast Service Eta model data are used and when and where possible radar and satellite imagery. A secondary aim is to provide information of the general seasonal climate. This was achieved by means of a literature study of the dominating weather systems and the presentation of surface and upper air mean circulation charts. Fog is the most important weather phenomenon and serious disrupter of aviation at ADIA throughout the year. It does not occur during Shamal conditions, but fog can form well inland on the edge of the Empty Quarter at the Liwa Oasis when the Shamal wind becomes light. Contrary to local belief, fog is unlikely to occur on two, or more, consecutive nights. The Shamal can last for several days and disrupt helicopter flights to the oil rigs, while anabatic and katabatic effects often make it gustier and stronger inland at Al Ain than ADIA. While dust storms occur in strong southerly winds off the desert, the Shamal can bring dust from further afield from the north as can the previously unreported Nashi wind. The sea breeze can extend about 150 km inland to Al Ain and the Liwa Oasis. Thunderstorms associated with winter upper air troughs from the west, are the main producers of rain, while occasional thunderstorms off the Hajar Mountains in the east bring some rain in summer. Tropical depressions are a rare event. / Thesis (PhD)--University of Pretoria, 2010. / Geography, Geoinformatics and Meteorology / PhD / Unrestricted
37

Application of meteorological satellite products for short term forecasting of convection in Southern Africa

De Coning, Estelle 11 1900 (has links)
Thunderstorms, due to their high frequency of occurrence over southern Africa, and their major contribution to summer rainfall are the primary focus of very short range forecasting and nowcasting efforts in South Africa. With a limited number of surface and upper-air observations and the limited availability of numerical model output most southern African countries are heavily reliant on satellite technology. In developing tools for the first twelve forecast hours the South African Weather Service has to address both the national and regional needs. Thus, the blending of techniques in an optimal manner is essential. This study initially describes how the Global Instability Index product derived from the European Meteosat Second Generation Satellite was adapted for South African circumstances using a different numerical model to provide background information – creating the Regional Instability Indices (RII). The focus of the study is the development of a new convection indicator, called the Combined Instability Index (CII), which calculates the probability of convection from satellite derived instability indices and moisture, as well as height above sea level early in the morning when the sky is relatively cloud free. Early morning CII values were evaluated statistically against the occurrence of lightning over South Africa, where a lightning network is available, as well as against satellite derived precipitation over southern Africa, later in the same day. It is shown that the CII not only performs well, but also outperforms the individual RII when compared to the occurrence of lightning. The CII will be beneficial to operational forecasters to focus their attention on the area which is most favourable for the development of convection later in the day. / Environmental Sciences / Ph. D. (Environmental Sciences)
38

Application of meteorological satellite products for short term forecasting of convection in Southern Africa

de Coning, Estelle 11 1900 (has links)
Thunderstorms, due to their high frequency of occurrence over southern Africa, and their major contribution to summer rainfall are the primary focus of very short range forecasting and nowcasting efforts in South Africa. With a limited number of surface and upper-air observations and the limited availability of numerical model output most southern African countries are heavily reliant on satellite technology. In developing tools for the first twelve forecast hours the South African Weather Service has to address both the national and regional needs. Thus, the blending of techniques in an optimal manner is essential. This study initially describes how the Global Instability Index product derived from the European Meteosat Second Generation Satellite was adapted for South African circumstances using a different numerical model to provide background information – creating the Regional Instability Indices (RII). The focus of the study is the development of a new convection indicator, called the Combined Instability Index (CII), which calculates the probability of convection from satellite derived instability indices and moisture, as well as height above sea level early in the morning when the sky is relatively cloud free. Early morning CII values were evaluated statistically against the occurrence of lightning over South Africa, where a lightning network is available, as well as against satellite derived precipitation over southern Africa, later in the same day. It is shown that the CII not only performs well, but also outperforms the individual RII when compared to the occurrence of lightning. The CII will be beneficial to operational forecasters to focus their attention on the area which is most favourable for the development of convection later in the day. / Environmental Sciences / Ph. D. (Environmental Sciences)
39

Stih vÄtru jako nebezpeÄn jev v letectv­ / Wind shear as a dangerous fenomenon in aviation

Novozmsk, Adam January 2014 (has links)
This thesis is about wind shear and its influence on aviation. There is wide theoretical description of wind shear and itâs implemented into aviation practice. There are also methods of observation, forecasting and reporting, for both pilots and meteorologist described. In this thesis, pilots can find useful recommendations for dealing with wind shear during the flight. Every reader can also read about famous aviation accidents and look at models of weather that caused those accidents. At the end of thesis there are analyses of a rawiosonde measurements related to wind shear reports. This whole thesis is focused on increasing awareness of wind shear in aviation from angle of view of both pilots and aviation meteorologist.
40

Identifying enhanced urban heat island convection areas for Indianapolis, Indiana using space-borne thermal remote sensing methods

Boyd, Kelly D. 02 April 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Heat is one of the most important factors in our atmosphere for precipitation (thunderstorm) formation. Thermal energy from local urban land-cover is also a common source of heat in the lower atmosphere. This phenomenon is known as the urban heat island effect (UHI) and is identified as a substantial cause to a changing climate in surface weather modification. The proceeding study investigates this connection between the UHI and surface weather using remote sensing platforms A ten-year analysis of the Indianapolis UHI and thunderstorms were studied from the summer months of May, June, July, August and September (MJJAS) from 2002 until 2011. LANDSAT space borne satellite technology and land-surface based weather radar technology was used in this analysis for thunderstorm investigation. Precipitation areas identified from land-based NEXRAD WSR-88D technology were used to identify convection from non-synoptic forcing and non-normal surface diurnal heating scenarios. Only convection appearing from the UHI were studied and analyzed. Results showed twenty-one events over eighteen days with the year 2005 and 2011 having the largest frequency of events. The month of August had the largest concentration with seven events during the late afternoon hours. UHI results showed July had the largest heat island magnitude with April and September having the lowest magnitude in UHI temperatures. Three events of the twenty-one storm paths did not had a significant mean temperature difference in the heat island below the storm reflectivity. The nineteen storm paths that were significant had a warmer area underneath storm path development by an average 6.2°C than surrounding areas. UHI initiation points showed twelve of the twenty-one events having statistically significant differences between 2 km initiation areas and the rest of the study areas. Land-cover results showed low intensity developed areas had the most land-cover type (48%) in the 2km initiation buffer regions.

Page generated in 0.0582 seconds