• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Terahertz and Sub-Terahertz Tunable Resonant Detectors Based on Excitation of Two Dimensional Plasmons in InGaAs/InP HEMTs

Nader, Esfahani, Nima 01 January 2014 (has links)
Plasmons can be generated in the two dimensional electron gas (2DEG) of grating-gated high electron mobility transistors (HEMTs). The grating-gate serves dual purposes, namely to provide the required wavevector to compensate for the momentum mismatch between the free-space radiation and 2D-plasmons, and to tune the 2DEG sheet charge density. Since the plasmon frequency at a given wavevector depends on the sheet charge density, a gate bias can shift the plasmon resonance. In some cases, plasmon generation results in a resonant change in channel conductance which allows a properly designed grating-gated HEMT to be used as a voltage-tunable resonant detector or filter. Such devices may find applications as chip-scale tunable detectors in airborne multispectral detection and target tracking. Reported here are investigations of InGaAs/InP-based HEMT devices for potential tunable resonant sub-THz and THz detectors. The HEMTs were fabricated from a commercial double-quantum well HEMT wafer by depositing source, drain, and semi-transparent gate contacts using standard photolithography processes. Devices were fabricated with metalized transmission gratings with multiple periods and duty cycles. For sub-THz devices, grating period and duty cycle were chosen to be 9 ?m and 22%, respectively; while they were chosen to be 0.5 ?m and 80% for the THz device. The gratings were fabricated on top of the gate region with dimensions of 250 ?m x 195 ?m. The resonant photoresponse of the larger grating-period HEMT was investigated in the sub-THz frequency range of around 100 GHz. The free space radiation was generated by an ultra-stable Backward Wave Oscillator (BWO) and utilized in either frequency modulation (FM), or amplitude modulation (AM) experiments. The photoresponse was measured at 4K sample temperature as the voltage drop across a load resistor connected to the drain while constant source-drain voltages of different values, VSD, were applied. The dependence of such optoelectrical effect to polarization of the incident light, and applied VSD is studied. The results of AM and FM measurements are compared and found to be in agreement with the calculations of the 2D-plasmon absorption theory, however, a nonlinear behavior is observed in the amplitude and the line-shape of the photoresponse for AM experiments. For detection application, the minimum noise-equivalent-power (NEP) of the detector was determined to be 235 and 113 pW/Hz1/2 for FM and AM experiments, respectively. The maximum responsivity of the detector was also estimated to be ~ 200 V/W for the two experiments. The far-IR transmission spectra of the device with nanometer scale period was measured at 4 K sample temperature for different applied gate voltages to investigate the excitation of 2D-plasmon modes. Such plasmon resonances were observed, but their gate bias dependence agreed poorly with expectations.
2

Uncooled Infrared Photon Detection Concepts and Devices

Piyankarage, Viraj Vishwakantha Jayaweera 23 March 2009 (has links)
This work describes infrared (IR) photon detector techniques based on novel semiconductor device concepts and detector designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR detectors such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine detector parameters: (i) Near-infrared (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. A far-infrared detector based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, detector structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) detector structures consisting of n-TiO2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific detectivity (D*) was 9.5E+10 Jones at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3E+8 Jones at ~540 nm at ambient temperature. A typical HEIWIP/HIWIP detector structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR detection in the 2 5 μm wavelength range with a peak D* of 6.8E+5 Jones. A HIWIP detector based on p-GaSb/GaSb showed a free carrier response threshold wavelength at 97 µm (~3 THz)with a peak D* of 5.7E+11 Jones at 36 μm and 4.9 K. In this detector, a bolometric type response in the 97 - 200 µm (3-1.5 THz) range was also observed.
3

Studies on Performance Enhancement of Infrared and Terahertz Detectors for Space Applications

Sumesh, M A January 2016 (has links) (PDF)
Currently, the concept of multipurpose spacecrafts is being transformed into many small spacecrafts each of them performing specific tasks and thus leading to the realization of pico and nano satellites. No matter what is the application or size, demand for more number of IR channels for earth observation is ever increasing which necessitates significant reduction in the mass, power requirement and cost of the IR detectors. In this scenario, several order of magnitude mass and power savings associated with uncooled IR arrays are advantageous compared to cooled photon detectors. However the poor speed of response of uncooled microbolometer array devices obstruct the total replacement of cooled detectors in thermal imaging applications. This is especially true when the mission requires 50 m to 100 m ground resolution, in which even the "fastest" micro bolometer arrays turns "too slow" to follow the ground trace when looked from low earth orbit (LEO). Hence there is a great and unfulfilled requirement of faster uncooled detector arrays for meeting the demand for future micro and mini satellite projects for advanced missions. The present thesis describes the systematic studies carried out in development of high performance IR and THz detectors for space applications. Ge-Si-O thin films are prepared by ion beam sputtering technique with argon (Ar) alone and argon and oxygen as sputtering species, using sputtering targets of different compositions of Ge and SiO2. The deposited thin films are amorphous in nature and have chemical compositions close to that of the target. The study of electrical properties has shown that the activation energy and hence the thermistor constant (β) and electrical resistivity (ρ) are sensitive to oxygen flow rate, and they are the least for thin films prepared with Ar alone as the sputtering species. Different thermal isolation structures (TIS), consisting of silicon nitride (Si3N4) membrane of different thicknesses, Ge-Si-O thin film and, chromium coating on the rear side of the membrane, are prepared by bulk micro-machining technique, whose thermal conductance (Gth) properties are evaluated from the experimentally determined current-voltage (I-V) characteristics. Gth shows non-linear dependence with respect to raise in temperature of thin film thermistor due to Joule heating. The infrared micro-bolometer detectors, fabricated using one of the TIS structures have shown responsivity (<v) close to 115 V W−1 at a bias voltage of 1.5 V and chopping frequency of 10 Hz, thermal time constant (τth) of 2.5 ms and noise voltage of 255 nV Hz−1⁄2 against the corresponding thermal properties of Gth and thermal capacitance Cth equal to 9.0 × 10−5 W K−1 and 1.95 × 10−7 J K−1 respectively. The detectors are found to have uniform spectral response in the infrared region from 2 µm to 20 µm, and NEDT in the range from 108 mK to 574 mK when used with an F/1 optical system. The detector, in an infrared earth sensor system, is tested before an extended black body which simulates the earth disc in the laboratory and the results are discussed. As an extension of the single element detector to array device, design of a microbolometer array for earth sensor dispensing of scanning mechanisms is presented. It makes use of four microbolometer arrays with in-line staggered configuration that stare at the earth horizons, perceiving IR radiation in the spectral band of 14 µm to 16 µm. Design of the microbolometer has been carried out keeping in mind low power, lightweight, without compromising on the performance. An array configuration of 16 × 2 pixels is designed and developed for this purpose. Finite elemental analysis is carried out for design optimization to yield best thermal properties and thus high performance of the detectors. Suitable optical design configuration was arrived to image the earth horizon on to array. Using this optimum design, prototype arrays have been fabricated, packaged and tested in front of the black body radiation source and found to have Responsivity, NEP, and D∗ of 120 V W−1, 5.0 W Hz−1⁄2, 1.10 × 107 cm Hz1⁄2 W−1 respectively. The pixels show a uniform response within a spread of ±6 % and the pixel resistances are within a range of ±5 %. Optically Immersed Bolometer IR detectors are fabricated using electron beam evaporated Vanadium Oxide as the sensing material. Spin coated polyimide is used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices have been packaged in suitable electro-optical packages and the detector parameters are studied in detail. Thermal time constant varies from 0.57 ms to 6.1 ms and responsivity from 75VW−1 to 757VW−1 corresponding to polyimide thickness in the range 2.0 μm to 70 μm for a detector bias of 9V. Highest D obtained was 1.28 × 108 cm Hz1⁄2W−1. Noise Equivalent Temperature Difference (NETD) of 20mK is achieved for devices with polyimide thickness of 32 μm, whereas the NETD × th product is the lowest for devices with moderate thickness of thermal impedance layer. Bolometric THz detectors were fabricated using V2O5 as sensing element immersed onto germanium hemispherical lens using polyimide as immersion media. These detectors were characterized for their efficiency in detection of THz radiation in the range 10 THz to 35 THz emitted by a black body radiator. The responsivity of the devices determined in four different frequency bands covering the spectrum of interest and a maximum responsivity of 398VW−1 was observed. A variation in the responsivity is observed which is due to the characteristics absorption of polyimide in the THz region of interest and can be avoided by replacing with HDPE which has less attenuation. NEP of 6.8 × 10−10WHz−1⁄2 was observed which is very close to the state of art in the case of uncooled detectors which entitles the detectors for spectroscopic applications. Specific Detectivity D* was observed to be much higher than the conventional detectors thanks to the benefits of immersion. NETD of 26mK was observed which is advantageous of application of these detectors in imaging applications These studies have lead to development of a new technology for fabrication of high performance IR and THz detectors which can be used for spectroscopic and imaging applications. Further, this technology can be scaled for development of linear and area arrays finding applications where the speed of respnose as well as sensitivity are of equal importance. from 0.57 ms to 6.1 ms and responsivity from 75 V W−1 to 757 V W−1 corresponding to polyimide thickness in the range 2.0 µm to 70 µm for a detector bias of 9 V. Highest D∗ obtained was 1.28 × 108 cm Hz1⁄2 W−1. Noise Equivalent Temperature Difference (NETD) of 20 mK is achieved for devices with polyimide thickness of 32 µm, whereas the NETD × τth product is the lowest for devices with moderate thickness of thermal impedance layer. Bolometric THz detectors were fabricated using V2O5 as sensing element immersed onto germanium hemispherical lens using polyimide as immersion media. These detectors were characterized for their efficiency in detection of THz radiation in the range 10 THz to 35 THz emitted by a black body radiator. The responsivity of the devices determined in four different frequency bands covering the spectrum of interest and a maximum responsivity of 398 V W−1 was observed. A variation in the responsivity is observed which is due to the characteristics absorption of polyimide in the THz region of interest and can be avoided by replacing with HDPE which has less attenuation. NEP of 6.8 × 10−10 W Hz−1⁄2 was observed which is very close to the state of art in the case of uncooled detectors which entitles the detectors for spectroscopic applications. Specific Detectivity D* was observed to be much higher than the conventional detectors thanks to the benefits of immersion. NETD of 26 mK was observed which is advantageous of application of these detectors in imaging applications These studies have lead to development of a new technology for fabrication of high performance IR and THz detectors which can be used for spectroscopic and imaging applications. Further, this technology can be scaled for development of linear and area arrays finding applications where the speed of respnose as well as sensitivity are of equal importance.

Page generated in 0.0797 seconds