• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 14
  • 13
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clonage et caractérisation du gène TOP1 de Leishmania donovani

Broccoli, Sonia January 1998 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Les autoanticorps anti-ADN topoisomérase I dans la sclérose systémique : interaction directe avec les fibroblastes médiée par l'autoantigène

Tremblay, Mélanie January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Rôle de la topoisomérase I dans l'expression génique chez Escherichia coli

Baaklini, Imad January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Effet de l'antiterminaison de la transcription sur l'expression génique chez Escherichia coli en absence de topoisomérase I

Sanscartier, Patrick January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
5

Effet de la RNase HI sur l’expression génique et sur le surenroulement de l’ADN chez Escherichia coli

Nolent, Flora 01 1900 (has links)
Les R-loops générés durant la transcription sont impliqués dans de nombreuse fonctions incluant la réplication, la recombinaison et l’expression génique tant chez les procaryotes que chez les eucaryotes. Plusieurs études ont montré qu’un excès de supertours négatifs et des séquences riches en bases G induisent la formation de R-loops. Jusqu’à maintenant, nos résultats nous ont permis d’établir un lien direct entre les topoisomérases, le niveau de surenroulement et la formation de R-loops. Cependant, le rôle physiologique des R-loops est encore largement inconnu. Dans le premier article, une étude détaillée du double mutant topA rnhA a montré qu’une déplétion de RNase HI induit une réponse cellulaire qui empêche la gyrase d’introduire des supertours. Il s’agit ici, de la plus forte évidence supportant les rôles majeurs de la RNase HI dans la régulation du surenroulement de l’ADN. Nos résultats ont également montré que les R-loops pouvaient inhiber l’expression génique. Cependant, les mécanismes exacts sont encore mal connus. L’accumulation d’ARNs courts au détriment d’ARNs pleine longueur peut être causée soit par des blocages durant l’élongation de la transcription soit par la dégradation des ARNs pleine longueur. Dans le deuxième article, nous montrons que l’hypersurenroulement négatif peut mener à la formation de R-loops non-spécifiques (indépendants de la séquence nucléotidique). La présence de ces derniers, engendre une dégradation massive des ARNs et ultimement à la formation de protéines tronquées. En conclusion, ces études montrent l’évidence d’un lien étroit entre la RNase HI, la formation des R-loops, la topologie de l’ADN et l’expression génique. De plus, elles attestent de la présence d’un nouvel inhibiteur de gyrase ou d’un mécanisme encore inconnu capable de réguler son activité. Cette surprenante découverte est élémentaire sachant que de nombreux antibiotiques ciblent la gyrase. Finalement, ces études pourront servir également de base à des recherches similaires chez les cellules eucaryotes. / R-loops generated during transcription elongation are implicated in many DNA reactions, including replication, recombination and gene expression both in prokaryotes and in eukaryotes. Many studies have shown that negative supercoils excess and G-rich sequences induce the formation of R-loops. Up to now, our results allow us to establish a direct link between topoisomerases, supercoiling level, and the formation of R-loops. However, what the physiological significance, if any, of R-loops is still largely unknown. In the first article, a detailed study on double topA rnhA mutants showed that the depletion of RNase HI activity induces a cellular response which renders gyrase unable to perform supercoils. This is the first evidence implicating RNase HI as a major player in DNA supercoiling regulation. Our results also show that R-loops formation can lead to the inhibition of gene expression. However, the exact mechanism(s) leading to the inhibition of gene expression are not yet understood. The accumulation of shorter than full length RNAs could be caused by road-blocks during transcription elongation or by the degradation of full length RNAs. In the second article, we show that hypernegative supercoiling can lead to sequence independent R-loop formation. The physiological consequence is extensive RNA degradation which ultimately culminates in the formation of truncated proteins. In conclusion, this study clearly shows a close link between RNase HI activity, R-loop formation, DNA topology and gene expression. In addition, this study also provides some evidence for the synthesis of a gyrase inhibitor that can regulate gyrase activity directly or indirectly via unidentified mechanisms. This surprising observation is still preliminary taking into consideration that many antibiotics target gyrase. Finally results from this study could open up avenues for research in eukaryotes.
6

Effet de la RNase HI sur l’expression génique et sur le surenroulement de l’ADN chez Escherichia coli

Nolent, Flora 01 1900 (has links)
Les R-loops générés durant la transcription sont impliqués dans de nombreuse fonctions incluant la réplication, la recombinaison et l’expression génique tant chez les procaryotes que chez les eucaryotes. Plusieurs études ont montré qu’un excès de supertours négatifs et des séquences riches en bases G induisent la formation de R-loops. Jusqu’à maintenant, nos résultats nous ont permis d’établir un lien direct entre les topoisomérases, le niveau de surenroulement et la formation de R-loops. Cependant, le rôle physiologique des R-loops est encore largement inconnu. Dans le premier article, une étude détaillée du double mutant topA rnhA a montré qu’une déplétion de RNase HI induit une réponse cellulaire qui empêche la gyrase d’introduire des supertours. Il s’agit ici, de la plus forte évidence supportant les rôles majeurs de la RNase HI dans la régulation du surenroulement de l’ADN. Nos résultats ont également montré que les R-loops pouvaient inhiber l’expression génique. Cependant, les mécanismes exacts sont encore mal connus. L’accumulation d’ARNs courts au détriment d’ARNs pleine longueur peut être causée soit par des blocages durant l’élongation de la transcription soit par la dégradation des ARNs pleine longueur. Dans le deuxième article, nous montrons que l’hypersurenroulement négatif peut mener à la formation de R-loops non-spécifiques (indépendants de la séquence nucléotidique). La présence de ces derniers, engendre une dégradation massive des ARNs et ultimement à la formation de protéines tronquées. En conclusion, ces études montrent l’évidence d’un lien étroit entre la RNase HI, la formation des R-loops, la topologie de l’ADN et l’expression génique. De plus, elles attestent de la présence d’un nouvel inhibiteur de gyrase ou d’un mécanisme encore inconnu capable de réguler son activité. Cette surprenante découverte est élémentaire sachant que de nombreux antibiotiques ciblent la gyrase. Finalement, ces études pourront servir également de base à des recherches similaires chez les cellules eucaryotes. / R-loops generated during transcription elongation are implicated in many DNA reactions, including replication, recombination and gene expression both in prokaryotes and in eukaryotes. Many studies have shown that negative supercoils excess and G-rich sequences induce the formation of R-loops. Up to now, our results allow us to establish a direct link between topoisomerases, supercoiling level, and the formation of R-loops. However, what the physiological significance, if any, of R-loops is still largely unknown. In the first article, a detailed study on double topA rnhA mutants showed that the depletion of RNase HI activity induces a cellular response which renders gyrase unable to perform supercoils. This is the first evidence implicating RNase HI as a major player in DNA supercoiling regulation. Our results also show that R-loops formation can lead to the inhibition of gene expression. However, the exact mechanism(s) leading to the inhibition of gene expression are not yet understood. The accumulation of shorter than full length RNAs could be caused by road-blocks during transcription elongation or by the degradation of full length RNAs. In the second article, we show that hypernegative supercoiling can lead to sequence independent R-loop formation. The physiological consequence is extensive RNA degradation which ultimately culminates in the formation of truncated proteins. In conclusion, this study clearly shows a close link between RNase HI activity, R-loop formation, DNA topology and gene expression. In addition, this study also provides some evidence for the synthesis of a gyrase inhibitor that can regulate gyrase activity directly or indirectly via unidentified mechanisms. This surprising observation is still preliminary taking into consideration that many antibiotics target gyrase. Finally results from this study could open up avenues for research in eukaryotes.
7

Rôle de la GTPase Rho RND1 dans la réponse cellulaire à la camptothécine, inhibiteur de la topoisomérase I / Role of the RHO GTPASE RND1 in the cellular response to the topoisomerase I inhibitor camptothecin

Mouly, Laetitia 29 March 2018 (has links)
La famille des GTPases Rho, comprenant 20 membres, contrôle la dynamique du cytosquelette d'actine et différents processus cellulaires comme la migration. En plus de leurs rôles bien établis, certaines GTPases Rho, notamment RhoB et Rac1, ont émergé en tant que gènes de réponse précoce aux dommages à l'ADN. En effet, RhoB est induite en réponse à divers stress génotoxiques, y compris la camptothécine (CPT), les UV et le cisplatine, et protège principalement les cellules de l'apoptose. Le rôle des autres GTPases Rho en réponse précoce aux génotoxiques reste largement méconnu. Dans ce projet, nous avons utilisé la camptothécine, un inhibiteur de la topoisomérase I (TOP1), qui stabilise sélectivement les complexes de clivage TOP1-ADN (TOP1cc) sur la chromatine, afin de cribler les GTPases Rho induites de façon précoce par les dommages à l'ADN. En plus de RhoB, nous avons identifié RND1 comme un gène rapidement induit par la CPT. L'induction de RND1 est réversible et étroitement corrélée à la présence de TOP1cc induit par la CPT. En accord avec ces observations, les rayons UV et le péroxyde d'hydrogène, qui stabilisent indirectement les TOP1cc, induisent également RND1. La CPT augmente la transcription de RND1 indépendamment de l'activité de son promoteur minimal. De plus, la CPT augmente l'activité de la poly ADP-ribose polymérase (PARP1), dont l'inhibition prévient la transcription de RND1. La surexpression de RND1 augmente également l'expression de PARP1, suggérant une régulation positive entre PARP1 et RND1 en réponse aux TOP1cc. Ainsi, nous proposons qu'en réponse à la CPT, les TOP1cc activent PARP1, qui à son tour favorise la transcription de RND1, initiant ainsi une boucle de rétrocontrôle positive. Enfin, nous avons montré que RND1 protège les cellules contre l'apoptose induite par la CPT et entraîne leur résistance à la CPT. L'ensemble de ces résultats ont permis d'identifier RND1 comme nouvelle GTPase Rho impliquée dans la réponse au stress et proposent un nouveau mécanisme de régulation de la transcription des gènes en réponse aux TOP1cc via l'activation de PARP1. Ces résultats suggèrent par ailleurs qu'inhiber la signalisation de RND1 pourrait sensibiliser les cellules tumorales aux dérivés cliniques de la CPT. / Rho GTPase family comprises 20 members that regulate key cellular functions such as actin cytoskeleton organization and migration. Beside their canonical functions, certain Rho GTPases, including RhoB and Rac1, emerged as early DNA damage-inducible genes. Indeed, RhoB is readily induced in response to various genotoxic stress, including camptothecin (CPT), UV and cisplatin, and primarily protect cells against apoptotic cell death. Whether other Rho GTPases also respond early to genotoxics is largely unknown. In this project, we used camptothecin, a topoisomerase I (TOP1) inhibitor that selectively stabilized TOP1-DNA cleavage complexes (TOP1cc) onto chromatin, to screen for early DNA damage-inducible Rho GTPases. Besides RhoB, we identified RND1 as a gene rapidly induced by CPT. RND1 induction is reversible and closely associated with the presence of TOP1cc induced by CPT. Consistently, UV light and hydrogen peroxide, which indirectly stabilized TOP1cc, induce RND1 as well. CPT increases minimal promoter-independent RND1 transcription. Additionally, CPT increases poly ADP-ribose polymerase (PARP1) activity, whose inhibition prevents RND1 transcription. Overexpression of RND1 also increases PARP1 expression, suggesting a positive regulation between PARP1 and RND1 in response to TOP1cc. Thus, we propose that in response to CPT, TOP1cc activate PARP1, which in turn promotes RND1 transcription resulting in a positive feedback loop. Finally, we found that RND1 protects cells against CPT-induced apoptosis and leads to resistance to CPT. Together, these results highlight RND1 as a new Rho GTPase involved in the response to stress and propose a new mechanism for TOP1cc-induced gene transcription through PARP1 activation. These findings further suggest that inhibiting RND1 signaling could sensitize tumor cells to CPT derivatives.
8

Synthèse totale de deux nouveaux analogues de la camptothécine modifiés sur le cycle E

Devert, Marie 04 July 2011 (has links) (PDF)
La 20(S)-camptothécine (CPT) est un alcaloïde pentacyclique doté d'une activité anticancéreuse remarquable, agissant comme inhibiteur de la topoisomérase I (topo I). Le problème majeur de ce composé (et de la plupart de ses dérivés) est la fragilité de son cycle E qui s'hydrolyse rapidement à pH physiologique pour conduire au carboxylate correspondant inactif. L'une des approches permettant de pallier ce problème d'hydrolyse consiste à modifier le cycle E. Ce travail de thèse porte sur la synthèse totale de deux nouveaux analogues de la CPT modifiés au niveau du cycle E. Chacune de ces synthèses fait appel à une cycloaddition [3+2] afin de préparer l'hydroxypyridone de départ (cycles C et D), à un réarrangement de Claisen permettant de mettre en place le cycle E et à une condensation de Friedländer pour installer le motif quinoléinique (cycles A et B). Le premier analogue synthétisé, la (±) 17 norcamptothécine (17-norCPT), possède une α-hydroxy γ-lactone à la place de l'α-hydroxy δ-lactone de la CPT. Ce composé a été obtenu en neuf étapes avec un rendement de 4,4% à partir de l'hydroxypyridone de départ. Le test d'inhibition de la topo I a été réalisé, mais cette molécule s'est révélée totalement inactive. Cependant, une étude de la cinétique d'hydrolyse de la 17-norCPT, réalisée par spectroscopie de fluorescence, a permis de montrer que cet analogue était très instable en milieu aqueux. Le second composé préparé est en fait un homologue de la 17 norCPT possédant un méthylène entre l'oxygène et le carbonyle de la lactone. Cette molécule, comportant un motif céto éther, est donc un isomère de la CPT. Elle a été obtenue par deux voies de synthèse différant l'une de l'autre par l'ordre des réactions mises en œuvre. Chacune de ces approches permet d'obtenir le composé souhaité en neuf étapes à partir de l'hydroxypyridone de départ, avec un rendement de 16% et 10% respectivement. Les tests biologiques sur le composé final sont actuellement en cours.
9

Caractérisation de nouvelles fonctions du facteur d’épissage B52 dans la transcription et la croissance cellulaire chez la drosophile / Characterization of new functions of the splicing factor B52 in transcription and cell growth in Drosophila melanogaster

Fernando, Céline 08 December 2011 (has links)
Les protéines SR, qui constituent une famille conservée de facteurs liant l'ARN, jouent un rôle majeur dans l'épissage des ARN et en particulier dans la régulation de l'épissage alternatif. Certaines protéines SR peuvent également participer à l'élongation de la transcription, l'export, la stabilité ou la traduction des ARNm. Ces différents rôles soulignent l'importance des protéines SR en tant que régulateurs clés du métabolisme des ARNm et de l'expression des gènes. Des altérations de leur quantité ou de leur activité peuvent induire des défauts développementaux ou des pathologies telles que des tumeurs. Afin de mieux comprendre les fonctions et les mécanismes de régulation des protéines SR in vivo, je me suis intéressée à la protéine SR B52 chez D. melanogaster. En réalisant un crible génétique, nous avons identifié des protéines capables de sauver les phénotypes induits par la surexpression de B52 in vivo. L'une de ces protéines est l'ADN Topoisomérase I (Topo I). La Topo I possède à la fois une activité topoisomérase impliquée dans la relaxation de l'ADN, et une activité kinase capable de phosphoryler les protéines SR. Nous avons montré que B52 est impliquée dans le recrutement de la Topo I aux sites actifs de transcription, en particulier lors de l'induction des gènes heat shock, et que ces protéines jouent un rôle dans la libération de l'ARN hsp70 de son site de transcription et dans l'extinction de sa transcription. Une autre protéine capable de sauver les phénotypes induits par la surexpression de B52 est Brain tumor, un répresseur post-transcriptionnel de l'expression de myc. Myc est un régulateur clé de la croissance chez la drosophile. Nos résultats révèlent un effet positif de B52 sur la croissance cellulaire dans certains tissus, et sur l'expression de dmyc. Nous montrons également que le niveau de B52 affecte l'épissage alternatif de plusieurs gènes impliqués dans la croissance, dont le coactivateur transcriptionnel Yorkie et le facteur d'initiation de la traduction eIF4E. Ainsi, nos travaux suggèrent que la protéine SR B52 pourrait coordonner un ensemble d'évènements d'épissage dans des voies de signalisation impliquées dans la croissance cellulaire. / SR proteins, which constitute a conserved family of RNA-binding factors, play a key role in RNA splicing and particularly in alternative splicing regulation. In addition, some SR proteins have been shown to participate in transcription elongation, mRNA export, mRNA stability and mRNA translation. These wide-ranging roles of SR proteins highlight their importance as pivotal regulators of mRNA metabolism and gene expression. Alteration of their expression level or activity can induce developmental defects or pathologies such as tumors. To better understand SR proteins functions and how they are regulated in vivo, I studied a major SR protein in Drosophila melanogaster called B52. Using a genetic screen, we identified proteins that can rescue the phenotypes induced by B52 overexpression. Among them is the DNA Topoisomerase I (Topo I). Topo I carries two enzymatic activities: a topoisomerase activity that can relax DNA supercoiling generated by transcription or replication, and a kinase activity which phosphorylates SR proteins. We showed that B52 is required for Topo I recruitment to active transcription sites, especially at the heat shock genes upon their induction, and that these proteins play a role in hsp70 mRNA release from its transcription site and in its transcription shutdown. Another protein that can rescue the phenotypes induced by B52 overexpression is Brain tumor, a post-transcriptional repressor of myc expression. Myc is a major regulator of cell growth in Drosophila. Our results reveal a positive effect of B52 on cell growth in some tissues, and on myc expression. We also show that B52 level can affect the alternative splicing of several genes involved in cell growth, especially that of the transcriptional coactivator Yorkie and the translation initiation factor eIF4E. Thus, our work suggests that the SR protein B52 could coordinate a range of splicing events in signalling pathways involved in cell growth.
10

Dissection moléculaire de l’interaction de la DNA topoisomérase I avec la matrice extracellulaire et les fibroblastes

Beauchemin, Karine 06 1900 (has links)
La sclérose systémique est une maladie autoimmune dont l’une des complications majeures est la fibrose. La DNA topoisomérase I (topo) est l’un des principaux autoantigènes associés à cette maladie. Toutefois, aucun lien n’a encore pu être établi entre la présence des anti-topo et le développement de la fibrose. Les travaux antérieurs du laboratoire d’accueil ont montré une interaction directe de la topo avec la surface des fibroblastes et la matrice extracellulaire. Nous avons voulu caractériser ces interactions du point de vue moléculaire. La topo a donc été exprimée sous forme de 5 fragments, déterminés à partir de ses principaux domaines structuraux et de ses épitopes majeurs, chez E. coli. Les fragments purifiés ont été analysés pour leur interaction avec l’héparine, représentant les héparane sulfates de la surface des fibroblastes, et avec des protéines purifiées de la matrice extracellulaire. Nous avons montré que le fragment topo-N est le principal responsable de l’interaction avec l’héparine, ce qui suggère donc l’implication potentielle de ce domaine dans l’interaction de la topo avec la surface des fibroblastes. Le fragment topo-DIDII est responsable de l’interaction avec la plupart des protéines de la matrice extracellulaire étudiées, alors que le fragment topo-H15 n’interagit qu’avec la vitronectine. Aucune interaction des fragments topo-DIII et topo-C n’a été décelée. Ces résultats pourront maintenant servir à mieux comprendre le rôle potentiel de la topo et des autoanticorps circulants anti-topo dans la fibrose présente chez les personnes atteintes de sclérose systémique en contribuant à l’identification de la cible de la topo sur les fibroblastes. / Systemic sclerosis is an autoimmune disease in which one of the major complications is fibrosis. DNA topoisomerase I (topo) is a major autoantigen associated with this disease. However, no link has yet been established between the presence of anti-topo and the development of fibrosis. Previous work of the host laboratory showed a direct interaction of the topo with the surface of fibroblasts and extracellular matrix. We wanted to characterize these interactions at the molecular level. Topo was expressed in 5 fragments, determined from its main structural domains and its major epitopes, in E. coli. The purified fragments were analyzed for their interaction with heparin, representing heparan sulfates on the surface of fibroblasts, and with purified proteins of the extracellular matrix. We have shown that the topo-N fragment is responsible for interaction with heparin, suggesting hence, potential involvement of this domain in the interaction of topo with the surface of fibroblasts. The topo-DIDII fragment is responsible for the interaction with most proteins of the extracellular matrix studied, whereas the topo-H15 fragment only binds to vitronectin. No interaction of fragments topo-DIII and topo-C was found. These results can now be used to better understand the potential role of topo and circulating anti-topo autoantibodies in the fibrosis present in patients with systemic sclerosis in helping to identify the target of topo on fibroblasts.

Page generated in 0.0353 seconds