• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 8
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 12
  • 10
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Campos de Gauge e matéria na rede - generalizando o Toric Code / Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.

Juan Pablo Ibieta Jimenez 14 May 2015 (has links)
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo. / Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states.
12

Characterization of topological phases in models of interacting fermions

Motruk, Johannes 15 July 2016 (has links) (PDF)
The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z_N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z_N symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i)~the Hall conductivity, (ii)~the spectral flow and level counting in the ES, (iii)~the topological entanglement entropy, and (iv)~the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced by next-nearest neighbor interactions has been predicted by mean field theory. However, various subsequent studies challenged this picture and it was still unclear whether the CI would survive quantum fluctuations. We therefore map out the phase diagram of the model as a function of the interactions on an infinite cylinder with DMRG and find evidence for the absence of the CI phase. However, we report the detection of two novel charge-ordered phases and corroborate the existence of the remaining phases that had been predicted in mean field theory. Furthermore, we characterize the transitions between the various phases by studying the behavior of correlation length and entanglement entropy at the phase boundaries. Finally, we develop an improvement to the DMRG algorithm for fermionic lattice models on cylinders. By using a real space representation in the direction along the cylinder and a real space representation in the perpendicular direction, we are able to use the momentum around the cylinder as conserved quantity to reduce computational costs. We benchmark the method by studying the interacting Hofstadter model and report a considerable speedup in computation time and a severely reduced memory usage.
13

Teorias de 2-gauge e o invariante de Yetter na construção de modelos com ordem topológica em 3-dimensões / 2-gauge theories and the Yetter\'s invariant on the construction of models with topological order in 3-dimensions

Mendonça, Hudson Kazuo Teramoto 29 June 2017 (has links)
Ordem topológica descreve fases da matéria que não são caracterizadas apenas pelo esquema de quebra de simetria de Landau. Em 2-dimensões ordem topológica é caracterizada, entre outras propriedades, pela existência de uma degenerescência do estado fundamental que é robusta sobre perturbações locais arbitrarias. Com o proposito de entender o que caracteriza e classifica ordem topológica 3-dimensional o presente trabalho apresenta um modelo quântico exatamente solúvel em 3-dimensões que generaliza os modelos em 2-dimensões baseados em teorias de gauge. No modelo proposto o grupo de gauge é substituído por um 2-grupo. A Hamiltonia, que é dada por uma soma de operadores locais, é livre de frustrações. Provamos que a degenerescência do estado fundamental nesse modelo é dado pelo invariante de Yetter da variedade 4-dimensional Sigma × S¹, onde Sigma é a variedade 3-dimensional onde o modelo está definido. / Topological order describes phases of matter that cannot be described only by the symmetry breaking theory of Landau. In 2-dimensions topological order is characterized, among other properties, by the presence of a ground state degeneracy that is robust to arbitrary local perturbations. With the purpose of understanding what characterizes and classify 3-dimensional topological order this works presents an exactly soluble quantum model in 3-dimensions that generalize 2-dimensional models constructed using gauge theories. In the model we propose the gauge group is replaced by a 2-group. The Hamiltonian, that is given by a sum of local commuting operators, is frustration free. We prove that the ground state degeneracy of this model is given by the Yetters invariant of the 4-dimensional manifold Sigma × S¹, where Sigma is the 3-dimensional manifold the model is defined.
14

Non-abelian braiding in abelian lattice models from lattice dislocations / Icke-abelsk flätning i abelska gittermodeller genom dislokationer

Flygare, Mattias January 2014 (has links)
Topological order is a new field of research involving exotic physics. Among other things it has been suggested as a means for realising fault-tolerant quantum computation. Topological degeneracy, i.e. the ground state degeneracy of a topologically ordered state, is one of the quantities that have been used to characterize such states. Topological order has also been suggested as a possible quantum information storage. We study two-dimensional lattice models defined on a closed manifold, specifically on a torus, and find that these systems exhibit topological degeneracy proportional to the genus of the manifold on which they are defined. We also find that the addition of lattice dislocations increases the ground state degeneracy, a behaviour that can be interpreted as artificially increasing the genus of the manifold. We derive the fusion and braiding rules of the model, which are then used to calculate the braiding properties of the dislocations themselves. These turn out to resemble non-abelian anyons, a property that is important for the possibility to achieve universal quantum computation. One can also emulate lattice dislocations synthetically, by adding an external field. This makes them more realistic for potential experimental realisations. / Topologisk ordning är ett nytt område inom fysik som bland annat verkar lovande som verktyg för förverkligandet av kvantdatorer. En av storheterna som karakteriserar topologiska tillstånd är det totala antalet degenererade grundtillstånd, den topologiska degenerationen. Topologisk ordning har också föreslagits som ett möjligt sätt att lagra kvantdata. Vi undersöker tvådimensionella gittermodeller definierade på en sluten mångfald, specifikt en torus, och finner att dessa system påvisar topologisk degeneration som är proportionerlig mot mångfaldens topologiska genus. När dislokationer introduceras i gittret finner vi att grundtillståndets degeneration ökar, något som kan ses som en artificiell ökning av mångfaldens genus. Vi härleder sammanslagningsregler och flätningsregler för modellen och använder sedan dessa för att räkna ut flätegenskaperna hos själva dislokationerna. Dessa visar sig likna icke-abelska anyoner, en egenskap som är viktiga för möjligheten att kunna utföra universella kvantberäkningar. Det går också att emulera dislokationer i gittret genom att lägga på ett yttre fält. Detta gör dem mer realistiska för eventuella experimentella realisationer.
15

Teorias de 2-gauge e o invariante de Yetter na construção de modelos com ordem topológica em 3-dimensões / 2-gauge theories and the Yetter\'s invariant on the construction of models with topological order in 3-dimensions

Hudson Kazuo Teramoto Mendonça 29 June 2017 (has links)
Ordem topológica descreve fases da matéria que não são caracterizadas apenas pelo esquema de quebra de simetria de Landau. Em 2-dimensões ordem topológica é caracterizada, entre outras propriedades, pela existência de uma degenerescência do estado fundamental que é robusta sobre perturbações locais arbitrarias. Com o proposito de entender o que caracteriza e classifica ordem topológica 3-dimensional o presente trabalho apresenta um modelo quântico exatamente solúvel em 3-dimensões que generaliza os modelos em 2-dimensões baseados em teorias de gauge. No modelo proposto o grupo de gauge é substituído por um 2-grupo. A Hamiltonia, que é dada por uma soma de operadores locais, é livre de frustrações. Provamos que a degenerescência do estado fundamental nesse modelo é dado pelo invariante de Yetter da variedade 4-dimensional Sigma × S¹, onde Sigma é a variedade 3-dimensional onde o modelo está definido. / Topological order describes phases of matter that cannot be described only by the symmetry breaking theory of Landau. In 2-dimensions topological order is characterized, among other properties, by the presence of a ground state degeneracy that is robust to arbitrary local perturbations. With the purpose of understanding what characterizes and classify 3-dimensional topological order this works presents an exactly soluble quantum model in 3-dimensions that generalize 2-dimensional models constructed using gauge theories. In the model we propose the gauge group is replaced by a 2-group. The Hamiltonian, that is given by a sum of local commuting operators, is frustration free. We prove that the ground state degeneracy of this model is given by the Yetters invariant of the 4-dimensional manifold Sigma × S¹, where Sigma is the 3-dimensional manifold the model is defined.
16

Magnetic-Field-Driven Quantum Phase Transitions of the Kitaev Honeycomb Model

Ronquillo, David Carlos 11 September 2020 (has links)
No description available.
17

Anyon theory in gapped many-body systems from entanglement

Shi, Bowen 20 August 2020 (has links)
No description available.
18

Emergent Gauge Fields in Systems with Competing Interactions

Gohlke, Matthias 27 November 2018 (has links)
Interactions between the microscopic constituents of a solid---a many-body system--- can lead to novel phases and exotic physical phenomena like fractionalization, topological order, quantum spin liquids, emergent gauge field, etc.. The concept of frustration provides a ground for such exotic phenomena. Frustration can prevent a many-body system from establishing long-range order down to the lowest temperatures due to competing interactions. Instead, competing interactions may result in disordered and liquid-like phases of matter that provide the vacuum for fractional excitations. The absence of any order parameter in strongly frustrated systems---due to not breaking any symmetry spontaneously--- immediately raises the question about possible experimental probes of spin-liquids and their fractional excitations. Dynamic probes, like inelastic neutron scattering or Raman scattering, provide an experimental method to detect signatures of fractionalised quasiparticles. The energy and momentum transferred in a scattering event is split between the fractional quasiparticles. On the theory side, computing such dynamical signatures beyond one spatial dimension is generally a difficult task. In this thesis, numerical methods like density matrix renormalisation group and matrix product states are used to study strongly frustrated magnets and their dynamics in a non-perturbative way. This thesis covers two physical models in the context of frustration and emergent gauge fields. Firstly, the Kitaev model of spin-1/2 degrees of freedom subject to strongly anisotropic spin exchange. The Kitaev model features quantum spin liquid ground states with fractionalization of spins into Majorana fermions and Z_2-fluxes---the visons of an emergent Z_2 gauge theory. The main questions addressed here concern the stability of the quantum spin liquid phase upon adding perturbations relevant in magnetic compounds such as Heisenberg or the symmetric-offdiagonal Gamma exchange. Applying a magnetic field drives the Kitaev model into a topologically ordered phase. The excitations and dynamical signatures within the spin liquid, the topologically ordered phase, and within ordered phases are studied. Secondly, a classical minimal model of the proton configuration in water ice is studied. The ice rules, a local constraint describing the low energy manifold, result in emergent Maxwell's equation. Upon applying an external electric field along certain axis, a polarization plateau occurs in which the remaining degrees of freedom can be described by dimers on two-dimensional lattices.
19

BOUNDARY AND DOMAIN WALL THEORIES OF 2D GENERALIZED QUANTUM DOUBLE MODELS

Sheng Tan (11386899) 17 April 2023 (has links)
<p>This dissertation consists of two parts. In the first part, we discuss the boundary and domain wall theories of the generalized quantum double lattice realization of the two-dimensional topological orders based on Hopf algebras. The boundary Hamiltonian and domain wall Hamiltonian are constructed by using Hopf algebra pairings and generalized quantum double. The algebraic data behind the gapped boundary and domain wall are comodule algebras and bicomodule algebras, respectively. The topological excitations in the boundary and domain wall are classified by bimodules over these algebras. Finally, via the Hopf tensor network representation of the quantum many-body states, we solve the ground state of the model in the presence of the boundary and domain wall.</p> <p><br></p> <p>In the second part, we introduce the weak Hopf algebra extension of symmetry, which arises naturally in anyonic quantum systems, and we establish weak Hopf symmetry breaking theory based on the fusion closed set of anyons. We present a thorough investigation of the quantum double model based on weak Hopf algebras, including the topological excitations and ribbon operators, and show that the vacuum sector of the model has weak Hopf symmetry. The gapped boundary and domain wall theories are also established. We show that the gapped boundary is algebraically determined by a comodule algebra, or equivalently, a module algebra, and the gapped domain wall is determined by the bicomodule algebra, or equivalently, a bimodule algebra. We also introduce the weak Hopf tensor network states, by which we solve the weak Hopf quantum double models on closed and open surfaces. Lastly, we discuss the duality of the quantum double phases.</p>
20

Characterization of topological phases in models of interacting fermions

Motruk, Johannes 25 May 2016 (has links)
The concept of topology in condensed matter physics has led to the discovery of rich and exotic physics in recent years. Especially when strong correlations are included, phenomenons such as fractionalization and anyonic particle statistics can arise. In this thesis, we study several systems hosting topological phases of interacting fermions. In the first part, we consider one-dimensional systems of parafermions, which are generalizations of Majorana fermions, in the presence of a Z_N charge symmetry. We classify the symmetry-protected topological (SPT) phases that can occur in these systems using the projective representations of the symmetries and find a finite number of distinct phases depending on the prime factorization of N. The different phases exhibit characteristic degeneracies in their entanglement spectrum (ES). Apart from these SPT phases, we report the occurrence of parafermion condensate phases for certain values of N. When including an additional Z_N symmetry, we find a non-Abelian group structure under the addition of phases. In the second part of the thesis, we focus on two-dimensional lattice models of spinless fermions. First, we demonstrate the detection of a fractional Chern insulator (FCI) phase in the Haldane honeycomb model on an infinite cylinder by means of the density-matrix renormalization group (DMRG). We report the calculation of several quantities characterizing the topological order of the state, i.e., (i)~the Hall conductivity, (ii)~the spectral flow and level counting in the ES, (iii)~the topological entanglement entropy, and (iv)~the charge and topological spin of the quasiparticles. Since we have access to sufficiently large system sizes without band projection with DMRG, we are in addition able to investigate the transition from a metal to the FCI at small interactions which we find to be of first order. In a further study, we consider a time-reversal symmetric model on the honeycomb lattice where a Chern insulator (CI) induced by next-nearest neighbor interactions has been predicted by mean field theory. However, various subsequent studies challenged this picture and it was still unclear whether the CI would survive quantum fluctuations. We therefore map out the phase diagram of the model as a function of the interactions on an infinite cylinder with DMRG and find evidence for the absence of the CI phase. However, we report the detection of two novel charge-ordered phases and corroborate the existence of the remaining phases that had been predicted in mean field theory. Furthermore, we characterize the transitions between the various phases by studying the behavior of correlation length and entanglement entropy at the phase boundaries. Finally, we develop an improvement to the DMRG algorithm for fermionic lattice models on cylinders. By using a real space representation in the direction along the cylinder and a real space representation in the perpendicular direction, we are able to use the momentum around the cylinder as conserved quantity to reduce computational costs. We benchmark the method by studying the interacting Hofstadter model and report a considerable speedup in computation time and a severely reduced memory usage.

Page generated in 0.0745 seconds