• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 8
  • 1
  • Tagged with
  • 28
  • 28
  • 20
  • 20
  • 15
  • 14
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'algèbre de Lie d'homotopie rationnelle des espaces de configurations dans une variété

Roisin, Paul 15 December 2006 (has links)
D'un point de vue rationnel, la question fondamentale dans l'étude des espaces de configurations dans une variété est la suivante : « Le type d'homotopie rationnel de l'espace des configurations de k points d'une variété simplement connexe dépend-t-il uniquement du type d'homotopie rationnel de cette variété ? » Dans cet ouvrage, nous nous intéressons aux variétés compactes, simplement connexes et sans bord. Dans ce cadre précis, nous étudions le lien entre les invariants d'homotopie rationnelle de l'espace des configurations de 2 points dans une variété, et le modèle minimal de Sullivan de cette variété. Le point clef de ce travail est la construction explicite d'une algèbre de Sullivan minimale qui s'injecte dans le modèle minimal de Sullivan de l'espace des configurations de deux points d'une variété. Nous en déduisons deux résultats essentiels concernant l'algèbre de Lie d'homotopie rationnelle de cet espace. D'une part, nous identifions une relation de cette algèbre de Lie, induite par l'action du groupe des permutations de deux éléments sur l'espace des configurations de deux points. D'autre part, nous prouvons que si la variété est coformelle et de catégorie rationnelle supérieure à 3, alors cette algèbre de Lie est complètement déterminée par le modèle minimal de la variété.
2

De multiples applications de l'homologie à l'imagerie numérique

Ethier, Marc January 2013 (has links)
L'explosion de la quantité de données numériques à traiter dans les sciences a poussé les chercheurs à développer des méthodes algorithmiques pour automatiser cette tâche. Parmi ces méthodes, on reconnaît les méthodes topologiques, qui utilisent des concepts issus de la topologie algébrique pour étudier les données. Cette thèse vise à décrire diverses méthodes topologiques qui sont utilisées dans les domaines de l'imagerie et de la comparaison de formes et à démontrer mathématiquement que les résultats numériques ainsi obtenus sont corrects. Elle est aussi accompagnée de tests qui servent à illustrer ces résultats.
3

Inférence d'interactions d'ordre supérieur et de complexes simpliciaux à partir de données de présence/absence

Roy-Pomerleau, Xavier 27 January 2024 (has links)
Malgré l’efficacité des réseaux pour représenter les systèmes complexes, de récents travaux ont montré que leur structure limite parfois le pouvoir explicatif des modèles théoriques, puisqu’elle n’encode que des relations par paire. Si une interaction plus complexe existe dans le système représenté, elle est automatiquement réduite à un groupe d’interactions par paire, c’est-à-dire d’ordre un. Il faut alors utiliser des structures qui prennent en compte les interactions d’ordre supérieur. Cependant, qu’elles soient ou non d’ordre supérieur, les interactions entre les éléments d’un système sont rarement explicites dans les jeux de données. C’est notamment le cas des données de présence/absence qui indiquent quelles espèces (animales, végétales ou autres) se retrouvent (ou non) sur un site d’observation sans indiquer les relations entre elles. L’objectif de ce mémoire est alors de développer une technique d’inférence pour dénicher les interactions d’ordre supérieur au sein de données de présence/absence. Ici, deux cadres théoriques sont explorés. Le premier est basé sur la comparaison entre la topologie des données, obtenue grâce à une hypothèse souple, et celle d’un ensemble aléatoire. Le second utilise plutôt les modèles log-linéaire et les tests d’hypothèses pour inférer les interactions une à une jusqu’à l’ordre désiré. Ce cadre a permis d’élaborer plusieurs méthodes d’inférence qui génèrent des complexes simpliciaux (ou des hypergraphes) qui peut être analysés grâce aux outils standards de la science des réseaux en plus de l’homologie. Afin de valider ces méthodes, nous avons développé un modèle génératif de données de présence/absence dans lesquelles les véritables interactions sont connues. Des résultats concrets ont également été obtenus pour des jeux de données réelles. Notamment, à partir de données de présence/absence d’oiseaux nicheurs du Québec, nous avons réussi à inférer des cooccurrences d’ordre deux. / Despite the effectiveness of networks to represent complex systems, recent work has shownthat their structure sometimes limits the explanatory power of the theoretical models, sinceit only encodes dyadic interactions. If a more complex interaction exists in the system, it isautomatically reduced to a group of pairwise interactions that are of the first order. We thusneed to use structures that can take higher-order interactions into account. However, whetherrelationships are of higher order or not is rarely explicit in real data sets. This is the case ofpresence/absence data, that only indicate which species (of animals, plants or others) can befound (or not) on a site without showing the interactions between them.The goal of this project is to develop an inference method to find higher-order interactionswithin presence/absence data. Here, two frameworks are examined. The first one is based onthe comparison of the topology of the data, obtained with a non-restrictive hypothesis, andthe topology of a random ensemble. The second one uses log-linear models and hypothesistesting to infer interactions one by one until the desired order. From this framework, we havedevelopped several inference methods to generate simplicial complexes (or hypergraphs) thatcan be studied with regular tools of network science as well as homology. In order to validatethese methods, we have developed a generative model of presence/absence data in which thetrue interactions are known. Results have also been obtained on real data sets. For instance,from presence/absence data of nesting birds in Québec, we were able to infer co-occurrencesof order two
4

Structures projectives convexes réelles sur une paire de pantalons

Gendron, Julie January 2015 (has links)
On introduit dans ce mémoire le plan projectif RP[indice supérieur 2] et certaines notions de géométrie projective telles que les coordonnées homogènes, les transformations projectives et le birapport. On s'intéresse plus particulièrement aux structures projectives convexes réelles sur une paire de pantalons. L'objectif est de paramétriser l'ensemble des classes d'équivalence de telles structures. On démontre que cet ensemble est de dimension huit et on identifie chaque structure projective à une configuration géométrique que nous visualiserons à l'aide du logiciel Mathematica. Finalement, on s'intéresse à l'effet des différents paramètres sur l'image de l'application développante, qui forme une région convexe du plan projectif.
5

Foncteurs polynomiaux et homologie stable à coefficients polynomiaux

Vespa, Christine 21 November 2013 (has links) (PDF)
Dans les catégories de foncteurs entre catégories abéliennes, les foncteurs additifs jouent un rôle privilégié dans plusieurs domaines de l'algébre. Cependant il existe de nombreux foncteurs trés intéressants qui ne sont pas additifs. Par exemple, le produit tensoriel de groupes abéliens définit un foncteur $T^2: Ab \to Ab$ donné par $T^2(G)=G \otimes G$ qui n'est pas additif mais polynomial de degré deux. Les foncteurs polynomiaux ont été introduits par Eilenberg et MacLane pour les foncteurs entre catégories de modules. De nombreux exemples de foncteurs polynomiaux apparaissent naturellement en topologie algébrique. En particulier, l'homologie stable de familles de groupes à coefficients donnés par des foncteurs polynomiaux peut être interprétée en termes d'homologie des foncteurs. Dans les cas favorables, cette homologie des foncteurs est accessible et fournit ainsi des calculs explicites des valeurs stables des homologies à coefficients tordus. Ce mémoire comporte deux parties. La première concerne l'étude de la structure des foncteurs polynomiaux et la seconde concerne le calcul de l'homologie stable d'une famille de groupes à coefficients donnés par un foncteur polynomial.
6

Optimisation de la couverture de communication et de mesure dans les réseaux de capteurs / Communication and measurement coverage optimization in Wireless Sensor Networks

Zhang, Mengyi 19 May 2015 (has links)
Un réseau de capteurs sans fil résulte du déploiement d'un ensemble de petites unités autonomes interagissant via un réseau construit grâce à leur module de communication qui observent leur environnement par des capteurs pour ensuite traiter et/ou sauvegarder cette information via leur capacité calculatoire et de stockage. La couverture est la seule représentation disponible aux réseaux de capteurs de l'espace physique environnant. Par conséquent, il est essentiel de pouvoir qualifier et quantifier sa qualité notamment concernant la présence de trous. Nos travaux utilisent la topologie algébrique pour répondre à ces problèmes. Plus précisément, nous définissons dans un premier temps une notion de trou de couverture d'un champ scalaire qui mesure la qualité de l'estimation par le réseau de capteurs sans pour autant connaître la position des capteurs. Cela permet d'utiliser l'homologie simpliciale pour déterminer la qualité de la couverture globale et accessoirement de mettre en veille certains capteurs surnuméraires tout en garantissant la couverture. Puis, afin de rendre le résultat précédent facilement calculable par un réseau de capteurs grâce à une distribution du calcul qui supporte en plus le passage à l'échelle, nous utilisons la théorie de Morse discrète pour faire le calcul des groupes d'homologie nécessaires à notre application précédente. Enfin, cette dernière approche est rendue suffisamment souple pour permettre le suivi temporel des modifications de la couverture de manière délocalisée. Cela permet non seulement de suivre la qualité de la couverture lorsque l'environnement se modifie mais aussi de proposer un schéma distribué de mise en veille des capteurs afin d'augmenter la durée de vie du réseau de capteurs tout en garantissant une couverture suffisante. / A wireless sensor network consists of a set of small autonomous units that interact via a network built by their communication modules. They observe their environment by their sensors and then they manage this information according to their computational capacity and storage. The coverage is the only representation available to the sensor network of its environment. Therefore, it is essential to quantify the quality of coverage especially related to the presence of holes. Our work uses algebraic topology to solve these problems. We first define a notion of the coverage hole in a scalar field, which measures the quality of the estimation by the sensor network without knowing the positions of the sensors. It allows the simplicial homology tool to determine the quality of the overall coverage and put certain redundant sensors into sleeping mode with the guarantee of the coverage. Then, to make the previous result easier to compute by a sensor network, the discrete Morse theory is used. It allows a distributed computation of the previous homology groups while supporting scalability necessary in sensor networks domain. Finally, one flexible approach that allows time varying tracking which allows a coverage is proposed in a distributed way. When the environment changes, this approach can not only guarantee the capability of monitoring of coverage quality, but also proposes a scheme to send to sleep the redundant sensors in order to increase the lifetime of the sensor network with adequate coverage.
7

Directed homotopy and homology theories for geometric models of true concurrency / Théories homotopiques et homologiques dirigées pour des modèles géométriques de la vraie concurrence

Dubut, Jérémy 11 September 2017 (has links)
Le but principal de la topologie algébrique dirigée est d’étudier des systèmes qui évoluent avec le temps à travers leur géométrie. Ce sujet émergea en informatique, plus particulièrement en vraie concurrence, où Pratt introduisit les automates de dimension supérieure (HDA) en 1991 (en réalité, l’idée de la géométrie de la concurrence peut être retracée jusque Dijkstra en 1965). Ces automates sont géométriques par nature: chaque ensemble de n processus exécutant des actions indépendantes en parallèle peuvent être modélisées par un cube de dimension n, et un tel automate donne naissance à un espace topologique, obtenu en recollant ces cubes. Cet espace a naturellement une direction du temps provenant du flot d’exécution. Il semble alors totalement naturel d’utiliser des outils provenant de la topologie algébrique pour étudier ces espaces: les chemins modélisent les exécutions et les homotopies de chemins, c’est-à-dire les déformations continues de chemins, modélisent l’équivalence entre exécutions modulo ordonnancement d’actions indépendantes, mais ces notions géométriques doivent préserver la direction du temps, d’une façon ou d’une autre. Ce caractère dirigé apporte des complications et la théorie doit être refaite, essentiellement depuis le début. Dans cette thèse, j’ai développé des théories de l’homotopie et de l’homologie pour ces espaces dirigés. Premièrement, ma théorie de l’homotopie dirigée est basée sur la notion de rétracts par déformations, c’est-à-dire de déformations continues d’un gros espaces sur un espace plus petit, suivant des chemins inessentiels, c’est-à-dire qui ne changent pas le type d’homotopie des « espaces d’exécutions ». Cette théorie est reliée aux catégories de composantes et catégories de dimension supérieures. Deuxièmement, ma théorie de l’homologie dirigée suit l’idée que l’on doit regarder les « espaces d’exécutions » et comment ceux-ci évoluent avec le temps. Cette évolution temporelle est traitée en définissant cette homologie comme un diagramme des « espaces d’exécutions » et en comparant de tels diagrammes en utilisant une notion de bisimulation. Cette théorie homologique a de très bonnes propriétés: elle est calculable sur des espaces simples, elle est un invariant de notre théorie homotopique, elle est invariante par des raffinements d’actions simples et elle une théorie des suites exactes. / Studying a system that evolves with time through its geometry is the main purpose of directed algebraic topology. This topic emerged in computer science, more particularly in true concurrency, where Pratt introduced the higher dimensional automata (HDA) in 1991 (actually, the idea of geometry of concurrency can be tracked down Dijkstra in 1965). Those automata are geometric by nature: every set of n processes executing independent actions can be modeled by a n-cube, and such an automaton then gives rise to a topological space, obtained by glueing such cubes together. This space naturally has a specific direction of time coming from the execution flow. It then seems natural to use tools from algebraic topology to study those spaces: paths model executions, homotopies of paths, that is continuous deformations of paths, model equivalence of executions modulo scheduling of independent actions, and so on, but all those notions must preserve the direction. This brings many complications and the theory must be done again.In this thesis, we develop homotopy and homology theories for those spaces with a direction. First, my directed homotopy theory is based on deformation retracts, that is continuous deformation of a big space on a smaller space, following directed paths that are inessential, meaning that they do not change the homotopy type of spaces of executions. This theory is related to categories of components and higher categories. Secondly, my directed homology theory follows the idea that we must look at the spaces of executions and those evolves with time. This evolution of time is handled by defining such homology as a diagram of spaces of executions and comparing such diagrams using a notion of bisimulation. This homology theory has many nice properties: it is computable on simple spaces, it is an invariant of our homotopy theory, it is invariant under simple action refinements and it has a theory of exactness.
8

Topologie Algébrique Dirigée et Concurrence

Haucourt, Emmanuel 11 October 2005 (has links) (PDF)
Afin d'étudier la concurrence au moyen de techniques issues de la topologie algébrique, on étudie les propriétés de la catégorie des espaces ordonnés. Le foncteur "catégorie fondamentale" associe à chaque tel espace une petite catégorie sans boucle, dont la taille de l'ensemble des objets est trop grand par rapport à l'information qu'elle contient. On définit alors la catégorie des composantes d'une petite catégorie sans boucle et l'on prouve un théorème qui justifie le bien fondé de cette définition ainsi qu'un théorème "à la van Kampen" qui ouvre la voie vers des calculs effectifs. On représente ainsi les programmes écrits en langage PV (on entend ici la version originale de Dijkstra) : plusieurs exemple sont traîtés.
9

Sous-algèbres de l'algèbre de Steenrod équivariante et une propriété de détection pour la K-théorie d'Atiyah

Ricka, Nicolas 10 December 2013 (has links) (PDF)
L'objectif de ce travail est l'étude de la K-théorie réelle connexe des 2-groupes abéliens élémentaires, c'est-à-dire, pour V un 2-groupe abélien élémentaire, l'objet kR^{\star}(BV ). Cet objet contient, entre autres, la K-théorie orthogonale connexe ko et la K-théorie unitaire connexe ku des 2-groupes abéliens élémentaires, et est naturellement muni d'une structure de Z[v1]-module, où v1 désigne la classe de Bott réelle, un relèvement équivariant en K-théorie réelle de la classe de Bott en K-théorie unitaire. En utilisant des outils provenant de la théorie d'homotopie stable Z/2-équivariante, et en particulier la tour des tranches, une tour naturelle dans la catégorie stable équivariante introduite dans les travaux récents de Hill, Hopkins et Ravenel, on montre que les éléments de torsion pour la classe de Bott réelle dans la K-théorie réelle des 2-groupes abéliens élémentaires sont annulés par la multiplication par v2 1. On effectue une étude détaillée de l'algèbre de Steenrod Z/2-équivariante A, constituée des opérations en HF2-cohomologie, et de sa relation avec l'algèbre de Steenrod classique modulo 2. On exhibe en particulier, pour tout entier n, des sous-algèbres extérieures de l'algèbre de Steenrod équivariante E(\beta_0,...,\beta_n), générées par certaines opérations \beta_ i, i entier, qui est une version Z/2-équivariante de la sous algèbre de l'algèbre de Steenrod modulo 2 engendrée par les n+1 premières opérations de Milnor. On s'intéresse ensuite l'algèbre homologique relative, dans la catégorie des E(\beta_0,\beta_1)-modules, relativement au sous-anneau E(\beta_0), et on introduit des outils de calcul très généraux permettant en particulier de déterminer tous les groupes d'extension relatifs Ext(F2,HF2^{\star}(BV )). On introduit ensuite la propriété de h-détection pour une tour d'objets dans une catégorie triangulée, et on relie les propriétés de h-détection à l'estimation de la v1-torsion de la K-théorie réelle connexe. On étudie ensuite l'obstruction pour qu'une tour vérifie la propriété de h-détection, pour h = 1 ou 2. On montre ensuite que l'obstruction pour que la tour des tranches de la K-théorie réelle vérifie la propriété de 2-détection est contrôlée par Ext(F2,HF2^{\star}(BV )), qu'on a calculé précédemment. Le résultat précédent concernant la v1-torsion de la K-théorie réelle des 2-groupes abéliens élémentaires suit. Une des applications de ce résultat est une détermination explicite de kR^{\star}(BV ).
10

Une résolution projective pour le second groupe de Morava pour p ≥ 5 et applications

Lader, Olivier 31 October 2013 (has links) (PDF)
Dans les années 80, Shimomura a déterminé les groupes d'homotopie du spectre de Moore V(0) localisé par rapport à K(2) la deuxième K-théorie de Morava. Plus tard, avec les travaux de Devinatz et Hopkins est apparu une autre suite spectrale convergeant vers les précédents groupes d'homotopies. Lorsque le paramètre premier p de la théorie K(2) est supérieur ou égal à cinq, la précédente suite spectrale dégénère. Ainsi, déterminer ces groupes d'homotopie revient à calculer les groupes de cohomologie du groupe stabilisateur de Morava à coefficients dans l'anneau de Lubin-Tate modulo p. En 2007, Henn a démontré l'existence, lorsque p > 3, d'une résolution projective du groupe de Morava de longueur quatre. Dans cette thèse, nous précisons une telle résolution projective. On l'applique ensuite au calcul effectif des groupes de cohomologie à coefficients dans l'anneau de Lubin-Tate modulo p. Enfin, on donne une seconde application, en redémontrant un résultat de Hopkins non publié sur le groupe de Picard de la catégorie des spectres K(2)-locaux.

Page generated in 0.0765 seconds