• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 363
  • 138
  • 47
  • 43
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 11
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 758
  • 758
  • 129
  • 115
  • 110
  • 103
  • 81
  • 64
  • 58
  • 56
  • 49
  • 49
  • 48
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
741

Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash : as a case study, Tutuka dumpsite, South Africa

Akinyemi, Segun Ajayi. January 2011 (has links)
The current study therefore aims to provide a comprehensive characterisation of weathered dry disposed ash cores, to reveal mobility patterns of chemical species as a function of depth and age of ash, with a view to assessing the potential environmental impacts. Fifty-nine samples were taken from 3 drilled cores obtained respectively from the 1 year, 8 year and 20-year-old sections of sequentially dumped, weathered, dry disposed ash in an ash dump site at Tutuka - a South African coal burning power station.
742

Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash: as a case study, Tutuka dump site, South Africa

Akinyemi, Segun Ajayi January 2011 (has links)
<p>The management and disposal of huge volumes of coal combustion by products such as fly ash has constituted a major challenge to the environment. In most cases due to the inadequate alternative use of coal fly ash, the discarded waste is stored in holding ponds, slag heaps, or stock piled in ash dumps. This practice has raised concerns on the prospect of inorganic metals release to the surface and groundwater in the vicinity of the ash dump. Acceptable scientific studies are lacking to determine the best ash disposal practices. Moreover, knowledge about the mobility patterns of inorganic species as a function of mineralogical association or pH susceptibility of the dry disposed ash dump under natural weathering conditions are scarce in the literature. Fundamental understanding of chemical interactions of dry disposed ash with ingressed CO2 from atmosphere, percolating rain water and brine irrigation within ash disposal sites were seen as key areas requiring investigation. The mineralogical association of inorganic species in the dry disposed ash cores can be identified and quantified. This would provide a basis for understanding of chemical weathering, mineralogical transformations or mobility patterns of these inorganic species in the dry ash disposal scenario. The current study therefore aims to provide a comprehensive characterisation of weathered dry disposed ash cores, to reveal mobility patterns of chemical species as a function of depth and age of ash, with a view to assessing the potential environmental impacts. Fifty-nine samples were taken from 3 drilled cores obtained respectively from the 1 year, 8 year and 20-year-old sections of sequentially dumped,&nbsp / weathered, dry disposed ash in an ash dump site at Tutuka - a South African coal burning power station. The core samples were characterized using standard analytical procedures viz: X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) techniques, Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and Acid neutralisation capacity (ANC) test. A modified sequential extraction (SE) method was used in this study. The chemical partitioning, mobility and weathering patterns in 1 year, 8 year and 20-year-old sections of the ash dump were respectively investigated using this modified sequential extraction scheme. The sequence of the extractions was as follows: (1) water soluble, (2) exchangeable, (3) carbonate, (4) iron and manganese and (5) residual. The results obtained from the 5 steps sequential extraction scheme were validated with the total metal content of the original sample using mass balance method. The distribution of major and trace elements in the different liquid fractions obtained after each step of sequential extraction of the 59 drilled core samples was determined by inductively coupled plasma mass spectrometry (ICPMS). The data generated for various ash core samples were explored for the systematic analysis of mineralogical transformation and change in ash chemistry with ageing of the ash. Furthermore, the data was analyzed to reveal the impact of ingressed CO2 from atmosphere, infiltrating rain water and brine irrigation on the chemistry of ash core samples. Major mineral phases in original ash core samples prior to extraction are quartz (SiO2) and mullite (3Al2O3&middot / 2SiO2). Other minor mineral phases identified were hematite (Fe2O3), calcite (CaCO3), lime (CaO), anorthite (CaAl2Si2O8), mica (Ca (Mg, Al)3 (Al3Si) O10 (OH)2), and enstatite (Mg2Si2O6). X-ray diffraction results show significant loss of crystallinity in the older ash cores. The presence of minor phases of calcite and mica in dry disposed ash cores are attributed to reduction in the pore water pH due to hydration, carbonation and pozzolanic reactions. The X-ray diffraction technique was unable to detect Fe-oxyhydroxide phase and morealuminosilicate phases in ash core samples due to their low abundance and amorphous character. X-ray fluorescence results of the original ash core samples showed the presence of major oxides, such as SiO2, Al2O3, Fe2O3, while CaO, K2O, TiO2, Na2O, MnO, MgO, P2O5, and SO3 occur in minor concentrations. The ratio of SiO2/Al2O3 classified the original core samples prior to extraction as a silico-aluminate class F fly ash. The ternary plot of major elements in 1-year-old ash core samples was both sialic and ferrocalsialic but 8 year and 20-year-old ash core samples were sialic in chemical composition. It is noteworthy that the mass % of SiO2 varies through the depth of the core with an increase of nearly 3 %, to 58 mass % of SiO2 at a depth of 6 m in the 1-year-old core whereas in the case of the 8-year-old core a 2 % increase of SiO2 to a level of 57.5 mass % can be observed at levels between 4-8 m, showing dissolution of major components in the matrix of older ash cores.. The Na2O content of the Tutuka ash cores was low and varied between 0.6-1.1 mass % for 1-year-old ash cores to around 0.6-0.8 mass % for 8-year-old ash cores. Sodium levels were higher in 1-year-old ash cores compared to 8 year and 20-year-old ashcores. Observed trends indicate that quick weathering of the ash (within a year) leached out Na+ from the ash dump. No evidence of Na+ encapsulation even though the ash dump was brine irrigated. Thus the dry disposal ash placement method does not result in a sustainable salt sink for Na-containing species over time. The total content of each of the elements in 1 year and 20-year-old ash cores was normalised with their total content in fresh ash from same power station to show enrichment and depletion factor. Major elements such as K+, Mn showed enrichment in 1-year-old ash cores whereas Al, Si, Na+, Ti, Ca, Mg, S and Fe showed depletion due to over time erosion. Trace elements such as Cr, Sr, P, Ba, Pb, V and Zn showed enrichment but Ni, Y, Zr showed depletion attributed to over time erosion. In 20-year-old ash cores, major elements such as Al, Na+ and Mn showed enrichment while Si, K+, Fe, Mg and Ca showed depletion highlighting their mobility. Trends indicated intensive flushing of major soluble components such as buffering constituents (CaO) by percolating rain water. The 1-year-old and 20-year-old coal ash cores showed a lower pH and greater loss/depletion of the soluble buffering constituents than the 2-week-old placed ash, indicating significant chemical weathering within a year. Based&nbsp / on ANC results the leaching behaviours of Ca, Mg, Na+, K+, Se, Cr, and Sr were found to be controlled by the pH of the leachant indicating high mobility of major soluble species in the ash cores when in contact with slightly acid rain water. Other investigated toxic metals such as As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. Chemical alterations and formation of transient minor secondary mineral phases was found to have a significant effect on the acid susceptibility and depletion pattern of chemical species in the core ash samples when compared to fresh ash. These ANC results correlated well with the data generated from the sequential extraction scheme. Based on sequential extraction results elements, showed noticeable mobility in the water soluble, exchangeable and carbonate fractions due to adsorption and desorption caused by variations in the pore water pH. In contrast, slight mobility of elements in the Fe and Mn, and residual fractions of dry disposed fly ashes are attributed to the co-precipitation and dissolution of minor amount of less soluble secondary phase overtime. The 1-year-old dry disposed ash cores were the least weathered among the 3 drilled ash cores. Therefore low concentration of toxic metals in older ash cores were ascribed to extensive weathering with slower release from residual mineral phases over time. Elements were found to associate with different mineral phases depending on the age or depth of the core samples showing greater heterogeneity in dispersion. For instance the average amount of total calcium in different mineral associations of 1-year-old ash cores is as follows / water soluble (10.2 %), exchangeable (37.04 %), carbonate (37.9 %), Fe and Mn (7.1 %) and residual (2.97 %). The amount of total Na+ in different mineral phases of 1-year-old ash cores followed this trend: water soluble (21 %), exchangeable (11.26 %), carbonate (2.6 %), Fe and Mn (4.7 %) and residual (53.9 %). The non-leachable portion of the total Na+ content (namely that contained in the residual fraction) in the 1-year-old ash core samples under conditions found in nature ranged between 5-91 %. This non-leachable portion of the Na+ showed the metastability of the mineral phases with which residual Na+ associates. Results showed older ash cores are enriched in toxic elements. Toxic elements such as As, B, Cr, Mo and Pb are enriched in the residual fraction of older ash cores. For instance As concentration in the residual fraction varied between 0.0003- 0.00043 mg kg-1 for 1-year-old ash cores to around 0.0003-0.0015 mg kg-1 for 20-year-old ash cores. This suggests that the older ash is enriched in toxic elements hence dust from the ash dump would be toxic to human health. The knowledge of mobility and ecotoxicological significance of coal fly ash is needed when considering its disposal or reuse in the environment. The mobility and ecotoxicology of inorganic metals in coal fly ash are determined by (i) mineralogical associations of inorganic species (ii) in-homogeneity in the ash dumps (iii) long and short term exposure to ingress CO2 and percolating rain water. Management issues such as inconsistent placement of ash in the dumps, poor choice of ash dump site, in-homogeneity in brine irrigation, no record of salt load put on the ash dumps and lack of proper monitoring requires improvement. The thesis provides justification for the use of the modified sequential extraction scheme as a predictive tool and could be employed in a similar research work. This thesis also proved that the dry ash disposal method was not environmental friendly in terms of overall leaching potential after significant chemical weathering. Moreover the study proved that the practice of brine co-disposal or irrigation on ash dumps is not sustainable as the ash dump did not act as a salt sink.</p>
743

History and geochemical evolution of igneous rocks forming the Panama land bridge since Late Cretaceous / Geschichte und geochemische Entwicklung der magmatischen Gesteine welche die Landbrücke von Panama seit der späten Kreide formen

Wegner, Wencke 22 August 2011 (has links)
No description available.
744

Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash: as a case study, Tutuka dump site, South Africa

Akinyemi, Segun Ajayi January 2011 (has links)
<p>The management and disposal of huge volumes of coal combustion by products such as fly ash has constituted a major challenge to the environment. In most cases due to the inadequate alternative use of coal fly ash, the discarded waste is stored in holding ponds, slag heaps, or stock piled in ash dumps. This practice has raised concerns on the prospect of inorganic metals release to the surface and groundwater in the vicinity of the ash dump. Acceptable scientific studies are lacking to determine the best ash disposal practices. Moreover, knowledge about the mobility patterns of inorganic species as a function of mineralogical association or pH susceptibility of the dry disposed ash dump under natural weathering conditions are scarce in the literature. Fundamental understanding of chemical interactions of dry disposed ash with ingressed CO2 from atmosphere, percolating rain water and brine irrigation within ash disposal sites were seen as key areas requiring investigation. The mineralogical association of inorganic species in the dry disposed ash cores can be identified and quantified. This would provide a basis for understanding of chemical weathering, mineralogical transformations or mobility patterns of these inorganic species in the dry ash disposal scenario. The current study therefore aims to provide a comprehensive characterisation of weathered dry disposed ash cores, to reveal mobility patterns of chemical species as a function of depth and age of ash, with a view to assessing the potential environmental impacts. Fifty-nine samples were taken from 3 drilled cores obtained respectively from the 1 year, 8 year and 20-year-old sections of sequentially dumped,&nbsp / weathered, dry disposed ash in an ash dump site at Tutuka - a South African coal burning power station. The core samples were characterized using standard analytical procedures viz: X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) techniques, Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and Acid neutralisation capacity (ANC) test. A modified sequential extraction (SE) method was used in this study. The chemical partitioning, mobility and weathering patterns in 1 year, 8 year and 20-year-old sections of the ash dump were respectively investigated using this modified sequential extraction scheme. The sequence of the extractions was as follows: (1) water soluble, (2) exchangeable, (3) carbonate, (4) iron and manganese and (5) residual. The results obtained from the 5 steps sequential extraction scheme were validated with the total metal content of the original sample using mass balance method. The distribution of major and trace elements in the different liquid fractions obtained after each step of sequential extraction of the 59 drilled core samples was determined by inductively coupled plasma mass spectrometry (ICPMS). The data generated for various ash core samples were explored for the systematic analysis of mineralogical transformation and change in ash chemistry with ageing of the ash. Furthermore, the data was analyzed to reveal the impact of ingressed CO2 from atmosphere, infiltrating rain water and brine irrigation on the chemistry of ash core samples. Major mineral phases in original ash core samples prior to extraction are quartz (SiO2) and mullite (3Al2O3&middot / 2SiO2). Other minor mineral phases identified were hematite (Fe2O3), calcite (CaCO3), lime (CaO), anorthite (CaAl2Si2O8), mica (Ca (Mg, Al)3 (Al3Si) O10 (OH)2), and enstatite (Mg2Si2O6). X-ray diffraction results show significant loss of crystallinity in the older ash cores. The presence of minor phases of calcite and mica in dry disposed ash cores are attributed to reduction in the pore water pH due to hydration, carbonation and pozzolanic reactions. The X-ray diffraction technique was unable to detect Fe-oxyhydroxide phase and morealuminosilicate phases in ash core samples due to their low abundance and amorphous character. X-ray fluorescence results of the original ash core samples showed the presence of major oxides, such as SiO2, Al2O3, Fe2O3, while CaO, K2O, TiO2, Na2O, MnO, MgO, P2O5, and SO3 occur in minor concentrations. The ratio of SiO2/Al2O3 classified the original core samples prior to extraction as a silico-aluminate class F fly ash. The ternary plot of major elements in 1-year-old ash core samples was both sialic and ferrocalsialic but 8 year and 20-year-old ash core samples were sialic in chemical composition. It is noteworthy that the mass % of SiO2 varies through the depth of the core with an increase of nearly 3 %, to 58 mass % of SiO2 at a depth of 6 m in the 1-year-old core whereas in the case of the 8-year-old core a 2 % increase of SiO2 to a level of 57.5 mass % can be observed at levels between 4-8 m, showing dissolution of major components in the matrix of older ash cores.. The Na2O content of the Tutuka ash cores was low and varied between 0.6-1.1 mass % for 1-year-old ash cores to around 0.6-0.8 mass % for 8-year-old ash cores. Sodium levels were higher in 1-year-old ash cores compared to 8 year and 20-year-old ashcores. Observed trends indicate that quick weathering of the ash (within a year) leached out Na+ from the ash dump. No evidence of Na+ encapsulation even though the ash dump was brine irrigated. Thus the dry disposal ash placement method does not result in a sustainable salt sink for Na-containing species over time. The total content of each of the elements in 1 year and 20-year-old ash cores was normalised with their total content in fresh ash from same power station to show enrichment and depletion factor. Major elements such as K+, Mn showed enrichment in 1-year-old ash cores whereas Al, Si, Na+, Ti, Ca, Mg, S and Fe showed depletion due to over time erosion. Trace elements such as Cr, Sr, P, Ba, Pb, V and Zn showed enrichment but Ni, Y, Zr showed depletion attributed to over time erosion. In 20-year-old ash cores, major elements such as Al, Na+ and Mn showed enrichment while Si, K+, Fe, Mg and Ca showed depletion highlighting their mobility. Trends indicated intensive flushing of major soluble components such as buffering constituents (CaO) by percolating rain water. The 1-year-old and 20-year-old coal ash cores showed a lower pH and greater loss/depletion of the soluble buffering constituents than the 2-week-old placed ash, indicating significant chemical weathering within a year. Based&nbsp / on ANC results the leaching behaviours of Ca, Mg, Na+, K+, Se, Cr, and Sr were found to be controlled by the pH of the leachant indicating high mobility of major soluble species in the ash cores when in contact with slightly acid rain water. Other investigated toxic metals such as As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. Chemical alterations and formation of transient minor secondary mineral phases was found to have a significant effect on the acid susceptibility and depletion pattern of chemical species in the core ash samples when compared to fresh ash. These ANC results correlated well with the data generated from the sequential extraction scheme. Based on sequential extraction results elements, showed noticeable mobility in the water soluble, exchangeable and carbonate fractions due to adsorption and desorption caused by variations in the pore water pH. In contrast, slight mobility of elements in the Fe and Mn, and residual fractions of dry disposed fly ashes are attributed to the co-precipitation and dissolution of minor amount of less soluble secondary phase overtime. The 1-year-old dry disposed ash cores were the least weathered among the 3 drilled ash cores. Therefore low concentration of toxic metals in older ash cores were ascribed to extensive weathering with slower release from residual mineral phases over time. Elements were found to associate with different mineral phases depending on the age or depth of the core samples showing greater heterogeneity in dispersion. For instance the average amount of total calcium in different mineral associations of 1-year-old ash cores is as follows / water soluble (10.2 %), exchangeable (37.04 %), carbonate (37.9 %), Fe and Mn (7.1 %) and residual (2.97 %). The amount of total Na+ in different mineral phases of 1-year-old ash cores followed this trend: water soluble (21 %), exchangeable (11.26 %), carbonate (2.6 %), Fe and Mn (4.7 %) and residual (53.9 %). The non-leachable portion of the total Na+ content (namely that contained in the residual fraction) in the 1-year-old ash core samples under conditions found in nature ranged between 5-91 %. This non-leachable portion of the Na+ showed the metastability of the mineral phases with which residual Na+ associates. Results showed older ash cores are enriched in toxic elements. Toxic elements such as As, B, Cr, Mo and Pb are enriched in the residual fraction of older ash cores. For instance As concentration in the residual fraction varied between 0.0003- 0.00043 mg kg-1 for 1-year-old ash cores to around 0.0003-0.0015 mg kg-1 for 20-year-old ash cores. This suggests that the older ash is enriched in toxic elements hence dust from the ash dump would be toxic to human health. The knowledge of mobility and ecotoxicological significance of coal fly ash is needed when considering its disposal or reuse in the environment. The mobility and ecotoxicology of inorganic metals in coal fly ash are determined by (i) mineralogical associations of inorganic species (ii) in-homogeneity in the ash dumps (iii) long and short term exposure to ingress CO2 and percolating rain water. Management issues such as inconsistent placement of ash in the dumps, poor choice of ash dump site, in-homogeneity in brine irrigation, no record of salt load put on the ash dumps and lack of proper monitoring requires improvement. The thesis provides justification for the use of the modified sequential extraction scheme as a predictive tool and could be employed in a similar research work. This thesis also proved that the dry ash disposal method was not environmental friendly in terms of overall leaching potential after significant chemical weathering. Moreover the study proved that the practice of brine co-disposal or irrigation on ash dumps is not sustainable as the ash dump did not act as a salt sink.</p>
745

Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash : as a case study, Tutuka dumpsite, South Africa

Akinyemi, Segun Ajayi. January 2011 (has links)
The current study therefore aims to provide a comprehensive characterisation of weathered dry disposed ash cores, to reveal mobility patterns of chemical species as a function of depth and age of ash, with a view to assessing the potential environmental impacts. Fifty-nine samples were taken from 3 drilled cores obtained respectively from the 1 year, 8 year and 20-year-old sections of sequentially dumped, weathered, dry disposed ash in an ash dump site at Tutuka - a South African coal burning power station.
746

Nutritional and toxicological studies on New Zealand mutton bird meat (Puffinus griseus)

Al-Amer, Saleh Suliaman January 2009 (has links)
New Zealand mutton bird or tītī (Puffinus griseus and order procellariiformes) nest in New Zealand during the summer months, migrate to the northern hemisphere during May and return in September. Their eggs are laid during November and December and the chicks are hatched in the following January and February. Large numbers of them are harvested from April to May in New Zealand. They are wild seabirds annually harvested by Maori according to the customary rights agreement set by Treaty of Waitangi.NZ mutton birds also called Sooty Shearwaters are noted for their high proportion of body fat.These birds are interesting since its sole diet is based on krill and other small marine organisms that are potentially rich in n-3 fatty acids and other marine bioactive compounds. The proximate composition, fatty and amino acids and cholesterol content of mutton bird pectoral muscle were determined and compared with other common meat to explore the nutritional value of this New Zealand delicacy. The concentration of twenty two essential and toxic elements including silver (Ag), aluminium (Al), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), selenium (Se), potassium (K), calcium (Ca), magnesium (Mg), boron (B), iron (Fe), nickel (Ni), sulphur (S), sodium (Na) and cobalt (Co) and zinc (Zn) in mutton bird breast meat (Puffinus griseus) were measured over two years to evaluate its safety for human consumption. Persistent organochlorine, dichlorodiphenyltrichloroethane (DDT) and their metabolites, and aldrin and lindane were also measured.Twenty bird carcasses were purchased in both 2006 and 2007 from a local source. Meat samples from the pectoral muscle of two carcasses were pooled to generate 10 samples for each year. These were used for trace element analysis using inductively coupled plasma-mass spectrometry (ICP-MS). Trace elements were in the range of 0 to 1.09 mg/kg wet weight for Ag, 0 to 3.32 for Al, 0.17 to 0.79 for As, 0.01 to 0.07 for Cd, 0.03 to 0.15 for Cr, 3.56 to 4.88 for Cu, 0 to 0.15 for Hg, 0.22 to 0.50 for Mn, 0 to 0.09 for Pb, 0.66 to 1.18 for Se and 11.49 to 23.70 for Zn. In 2006, Ag, Al, Mn and Zn concentrations were significantly higher but Pb and Hg concentrations significantly lower compared to the 2007 samples (P < 0.05). Apart from one sample in 2006, all the samples were below the published maximum level for concern. However, our preliminary data indicated that the higher level of Cd and other metals in the skin of mutton bird may compromise the overall safety to humans consuming the skin of mutton birds. It is suggested that the evaluation of the metals in different parts and/or the whole mutton bird at different seasons is required to assure complete safety to the consumers.Furthermore, the nutritional value of mutton bird meat was studied over two harvesting seasons (2006 and 2007) to investigate the impact of seasonal variation. The moisture and carbohydrates contents ranged between 54.0 to 55.0 % and 2.8 to 3.0 %, respectively, and no seasonal effects were evident in these components. The values for fat and ash contents were higher and the protein content lower for birds harvested in 2007 compared with the 2006 values which ranged from 11.8 to 13.0, 10.3 to 11.7, and 20.3 to 18.5 % for fat, ash and protein content respectively. The major amino acids in mutton bird pectoral muscle were glutamate, aspartate, lysine, leucine, and arginine. Higher lysine concentrations and lower proline, cystein and methionine were found in mutton birds compared with the literature values for beef, lamb and pork. The essential amino acid content in mutton bird (43.8 and 44.9 % in 2006 and 2007, respectively) was slightly higher than those found in beef and lamb meats (42-43%).The major fatty acids detected were palmitic (C16:0), stearic (C18:0), oleic and isomers (C18:1), eicosenoic (C20:1), Docosahexaenoic acid (DHA) (C22:6), icosapentaenoic acid (EPA) (C 20:5) and these accounted for approximately 77% of the fatty acids. The 3/6 ratio of fats from pectoral muscle was 1.3. The cholesterol concentration varied slightly in the two years with 184.4±37.37and 134.4±25.55mg/100 g fresh weight for 2007 and 2008 respectively. Mutton bird was shown to contain significantly higher cholesterol content (134.4-184.4) than other common meat such as chicken (80.3-88.9), lamb (62.3), fish (52.79) and beef (51.97). Overall, the nutritional value of mutton bird muscle was similar to or superior to the traditionally protein sources such as seafood and red meat. Annual variations existed in the composition of Mutton bird pectoral muscle but this is not of nutritional consequence but might be a useful indicator for ecological events such as feed availability and other environmental issues. Mutton bird seems to be a good source of essential minerals, Zn and Fe compared with other traditional meats source. Mutton bird meat is nutritionally as good as the major sources of red or white meats. It may even have advantages over the other common meats (beef, lamb, fish and chicken) due to its high protein and monounsaturated fatty acids (omega n-3 and n-6) content. However, its high cholesterol content may represent a risk factor for some people.
747

Influência de efluentes domésticos e petroquímicos em sedimentos e carapaças de foraminíferos do Canal de São Sebastião, SP / Influence of domestic and petrochemical sewage in tests of foraminifera and sediments of the São Sebastião Channel, SP

Silas Gubitoso 23 April 2010 (has links)
O presente estudo teve por objetivo avaliar a influência de esgotos domésticos e petroquímicos, dispostos por via de emissário submarino, nas composições físico-químicas e microbiológicas da coluna dágua e na geoquímica dos sedimentos, bem como investigar uma possível relação entre o meio e a composição química das carapaças do foraminífero Ammonia tepida. Para atingir tal objetivo foram coletadas 10 amostras de água e de sedimento superficial, no entorno dos emissários do Araçá e do Terminal Petrolífero Almirante Barroso (TEBAR), além de um ponto controle, no canal de São Sebastião, SP, em março e abril de 2007. Em cada amostra de água foram realizadas análises físico-químicas e microbiológicas. Nos sedimentos, foram realizadas análises granulométricas e geoquímicas (macronutrientes, elementos maiores e traços). Do sedimento, carapaças coradas (indivíduos vivos) e não coradas (mortos) de A. tepida foram triadas e analisadas em espectrômetros de energia dispersiva (MEV-EDS) e de emissão atômica (ICP-OES) para análise química dos elementostraços. Os resultados das análises físico-químicas e microbiológicas da água, indicaram que a coluna dágua não estava contaminada, no momento da amostragem, pois todos os valores obtidos estavam dentro dos limites exigidos pela resolução do CONAMA, nº 357/2005. Os resultados granulométricos mostraram que o sedimento é litoclástico e mais psamítico no Araçá, e mais pelítico, no TEBAR. Já os dados geoquímicos de carbono orgânico, nitrogênio, enxofre e fósforo revelaram que ambas as regiões são propícias ao enriquecimento desses elementos. A concentração de elementos-traço, na maioria dos pontos estudados, nas duas áreas, quando comparada aos valores guia de causaefeito, não foi considerada tóxica para a biota marinha. Contudo, foi observado enriquecimento significativo de cádmio, em certas áreas no Araçá, e de bário, no TEBAR. A concentração deste último elemento, provavelmente, está relacionada à água de produção do terminal. Os elementos-traço das carapaças de A. tepida coradas, em ambos os emissários, apresentaram maior número de correlações significativas com o sedimento, sugerindo que carapaças de foraminíferos mortos estão mais susceptíveis ao viés dos processos diagenéticos. No TEBAR, foram observadas correlações significativas positivas entre os teores de Co, Cr, Mn e Pb nos sedimentos e os elementos-traço das carapaças coradas. Já no Araçá, somente os teores de Cr correlacionaram-se positiva e significativamente aos teores encontrados nas carapaças coradas. Isto corrobora com a influência da composição do sedimento nas reações intracelulares dos foraminíferos, refletidas na construção do exoesqueleto. Diante do exposto, os resultados deste estudo trouxeram luz a novas questões que permitiram inferir que a auto-depuração da água do mar, em ambas as regiões, e a estação de tratamento de efluentes, no TEBAR, não se revelaram eficientes na diluição e/ou remoção do conteúdo de nutrientes, matéria orgânica e elementos maiores e traço. / The goal of this study was to evaluate the influence of domestic and petrochemical sewage, discharged through a submarine sewage outfall, on the physicochemical and microbiological composition of the water column and the geochemistry of sediments. As well as to investigate a possible relationship between the environment and the chemical composition of Ammonia tepida foraminifer\'s tests. The area where this study was focused on two sewage emissaries: Araçá and Almirante Barroso Petroliferous Terminal (TEBAR), both located in São Sebastião Channel, São Paulo, Brazil. To achieve this goal, 10 water and bottom sediments samples in in March and April of 2007 were collected form each outfall. A background sample also collected as a control. For each water sample physicochemical and microbiological analyses were carried out and, in the sediments, grainsize and geochemical (macronutrients, major and trace elements) were analyzed. Trace elements found in the tests of stained (live) and unstained (dead) Ammonia tepida were identified by scanning electron microscopy using energy dispersive spectroscopy (SEM-EDS) and by inductively coupled plasma optical emission spectrometry (ICP-OES). The analysis of the water samples showed that the water column was not contaminated. All the concentrations obtained were in accordance with the National Environmental Council (CONAMA) limits. Grain size analysis, demonstrated that the sediments are of terriginous origin, being mainly psamitic in Araçá and mainly pelitic in TEBAR. The geochemical data of organic Carbon, Nitrogen, Sulphur and Phosphorus revealed that both regions are susceptible to enrichment in these elements. In both areas, the concentration of trace elements, when compared to quality guideline values, was not considered toxic for marine life. However, significative enrichment in Cadmium in certain areas of Araçá and Barium in TEBAR. The latter is probably related to the terminal\'s water production. In both outfalls, it was observed a significant correlation between the trace elements in the live A. tepida\'s tests and the sediment, which suggests that the dead foraminifera are more susceptible to diagenical bias. In TEBAR the correlations observed were significative and positive among the elements Co, Cr, Mn and Pb present in the sediments and the trace elements of the stained tests. In the Araçá outfall, only the Cr levels correlate significative and positively with the levels found in the tinged tests. This shows that sediment composition influences the intracelular reactions in the forminifera, which reflected in the exoskeleton\'s building. Given the above, the results of this study brought up new questions that allowed to infer that sea water depuration at both outfalls, as well as at sewage treatment plant, in TEBAR was not sufficient to dilute and/or remove the nutrient content, the organic matter and major and trace elements of the sewage.
748

Mécanismes et transferts de l'arsenic dans une confluence du Var et étude d'une méthode de remédiation dans les eaux potables / Non disponible

Campredon, Brice 01 July 2013 (has links)
Ce travail s’inscrit dans une problématique locale de teneur élevée en arsenic naturel dans le but d’améliorer la surveillance et la gestion de la qualité de la ressource en eau dans l’arrière-pays niçois. L’existence de grandes disparités géographiques des teneurs en arsenic font de la géologie la cause principale de cette contamination. L’intérêt de ce travail est d’appréhender les interactions solide/solution entre l’arsenic total dissous et les particules solides (matières en suspensions, sédiment de lit de rivière, solides naturels). Pour décrypter le comportement géochimique de l’arsenic, les trois objectifs principaux sont : de déterminer son état de conservativité dans le milieu naturel ; puis d’étudier les phénomènes d’adsorption en laboratoire sur des solides naturels (illite, oxydes de fer) ou de référence (kaolinite) ; puis enfin d’apporter une application directe au piégeage de l’arsenic par la création d’un pilote de traitement destiné à dépolluer une source d’eau destiné à la consommation humaine. La concentration en particule est le facteur influençant la conservativité de l’arsenic dans le système de confluence Tinée/Var selon les données des compartiments dissous et particulaire. La fraction colloïdale semble avoir une implication de premier ordre lors de la période de crue étudiée. Le piégeage de l’arsenic est favorisé par les oxyhydroxydes de fer, les argiles puis en moindre quantité par les solides acido-solubles. / This work aimed to solve a local problem of high water contamination with natural arsenic. In order to monitor and manage the water resource quality in French Riviera region. The different geographical repartition of arsenic content makes the consequences of this contamination to the geology. The interest of this work is to understand the interaction at solid/liquid interfaces between total dissolved arsenic and the solid particles (suspended particles matter, bed sediments and natural solids). To elucidate the geochemical behavior of arsenic, the three main objectives are: to determine the conservative states in the natural environment, then to study the adsorption phenomena under laboratory conditions onto the natural solids (illite and iron oxides) or reference materials (kaolinite); thirdly to apply the outcome of this work to establish a processing pilot for arsenic removal to decontaminate drinking water. The particle content is the main factor which influences the conservativity of arsenic in the confluence Tinée/Var. Colloids seems to have the main role in the arsenic removal in the studied flood period. Arsenic removal is favored by iron oxides, and clays, but less efficiently by acid-soluble compounds. The study of sorption mechanisms onto clays showed that adsorption of arsenic is strongly dependent on pH, quantity of aluminol reactive sites, influence of competitive anions such as carbonates and phosphates. Finally, the association of zeolites (high specific surface area) with coating of amorphous iron oxides (high affinity for arsenic) makes this adsorbent the most efficient, hence was studied and used in this work for arsenic adsorption.
749

Genetic relationships and origin of the Ädelfors gold deposits in Southeastern Sweden

Wiberg Steen, Tobias January 2018 (has links)
Ädelfors is situated ca 17 km east of Vetlanda, Jönköping County, in the N-S striking Trans-scandinavian igneous belt and is a part of the NE-SW striking 1.83-1.82 Ga Oskarshamn-Jönköping belt emplaced during a continental subduction towards the Svecofennian continental margin. The continental arc hosts the 1.83 Ga metasedimentary Vetlanda supergroup composed of foliated metagreywacke, metasandstone and metaconglomerate. The sequence is intercalated by mafic and felsic volcanites and hosts the Cu-Au-Fe-mines at Ädelfors. Ädelfors mining field consists of ca 330 mineralized quartz veins hosting both copper, gold and iron. The iron mines Nilsson’s iron mine (NFE) and Fe-mine (FE), the copper mine Kamelen (KM) and the gold mines Brånad’s mine (BR), Adolf Fredrik’s mine (AF), Old Kron mine (GKR), Old Kolhag’s mine (GKO), Thörn mine (TH), New Galon mine (NG), Stenborg’s mine (ST), Tysk mine (TG), Hällaskallen (HS) and Fridhem (FR) have been investigated to deduce a possible genetic relation between the veins and their origin. Sulfur isotope ratios have also been conducted on pyrite from KM, AF and FE. The veins can stucturally be divided into several groups. AF, GKR, ST, NG, TH and possibly NFE are striking 10-70° with a dip of 55-70°. BR, GKO and KM are striking 110-140° with a dip of 80-90° whereas TG and HS strike 90-110° dipping 85°. Fridhem, being distal to the other mines, strikes 70° and dips 80°. A chlorite-quartz-biotite-sericite-rich metapelite hosts the veins in all localities except; FR where a layered, beresitizised felsic volcanite rich in plagioclase, sericite, biotite and quartz hosts disseminated pyrite; and NFE, HS and NG which are hosted by a mafic tuffite. Quartz veins are mainly milky and equigranular, exceptions are FE with black pyrite-bearing quartz veins, cutting through the banded magnetite-metapelite and KM with its dynamically recrystallized quartz. Chlorite-, zeolite-, carbonate-, hematite-, amphibole-, kalifeldspar-, sericite-, biotite- and epidote alteration has been observed among the localities. The ore minerals are dominated by: fractured sub- to euhedral pyrite in cataclastic aggregates or selvage bands, interstitial chalcopyrite in pyrite, marcasite, pyrrhotite, gold and sporadic chalcopyrite diseased sphalerite and arsenopyrite. Previously not reported tetradymite, staurolite, galena and Ce-monazite have also been observed. Bismuthinite and tetradymite as inclusions in pyrite were observed in AF, GKR, FR and TG. Gold was observed in AF, BR, GKR and TG as inclusions in pyrite or quartz with a Au/Ag median of 78.41. HS distinguishes itself with Au/Ag ratios of 4.66-5.25. The trace element ratios in pyrite reveal two major types of pyrite. 1) found in FE and KM (pyrite type 1) with Co/Ni ratio of 10.94, Bi/Au of 1.79, Bi/S of 0.037, Au/Ag of 11.13, S/Se of 235.96 and As/S of 0.006. 2) found in NG, GKO, ST, TH, AF, NFE, HS, GKR, BR, FR, TG and as stringers in KM4 py1 pyrite type 2) with an average Co/Ni ratio of 5.26, Bi/Au of 1.95, Bi/S of 0.031, Au/Ag of 4.19, S/Se of 0 and As/S of 0. δ34S values strengthens this grouping as KM and FE has 1,3-2,6 ‰ and AF 3,6-3,8 ‰. The following geological interpretation has been concluded: The banded iron formation in FE is the earliest mineralization and was later fractured, emplacing quartz veins with pyrite of type 1. During this event, the Cu-vein in KM was also formed. A second generation of fractures, emplaced after the Småland granitoids formed, were filled with quartz and pyrite of type 2 at mesozonal depth. This is the main stage of gold mineralization and includes NG, GKO, ST, TH, AF, NFE, GKR, BR, FR and TG. During this event, pyrite of type 2 was added to KM, causing recrystallizing of the quartz. HS is possibly emplaced last or altered as it is more enriched in silver. Morphology, mineralogy, alterations, mineral chemistry and sulfur isotope signatures indicates an orogenic origin of the gold-rich quartz veins at Ädelfors as well as the copper-rich vein in KM. / Ädelfors ligger ca 17 km öster om Vetlanda, Jönköpings län, i det N-S strykande Transskandinaviska granit och porfyrbältet och är en del av det NÖ-SV strykande 1,83-1,82 Ga Oskarshamn-Jönköpingsbältet (OJB) bildad i en kontinental subduktionszon i kanten av den Svecofenniska kontinentalplattan. I denna kontinentalbåge ligger Vetlanda supergruppen som är en metasedimentär del av OJB bestående av starkt folierad 1,83 Ga metagråvacka, metasandsten och metakonglomerat med inlagringar av mafiska och felsiska vulkaniter. Ädelfors gruvfält består utav ca. 330 kvartsgångar förande mestadels guld men också koppar. Järnmineraliseringar i form av bandad järnmalm finns också i området. Geologin, mineralogin och pyritens kemiska sammansättning från järngruvorna Nilssons järngruva (NFE) och Fe-gruvan (FE), koppargruvan Kamelen (KM) och guldgruvorna Brånadsgruvan (BR), Adolf Fredriks gruva (AF), Gamla Krongruvan (GKR), Gamla Kolhagsgruvan (GKO), Thörngruvan (TH), Nya Galongruvan (NG), Stenborgs gruva (ST), Tyskgruvan (TG), Hällaskallen (HS) och Fridhem (FR) har undersökts för att finna eventuella genetiska likheter. Svavelisotopförhållande har fastställts för pyrit från AF, FE och KM. Strukturellt kan gångarna delas in i ett antal grupper. AF, GKR, ST, NG, TH och möjligtvis NFE stryker 10-70° och stupar 55-70°. BR, GKO och KM stryker 110-140° och stupar 80-90° medan TG och HS stryker 90-110° och stupar 85°. Fridhem stryker 70° och stupar 80°. En klorit-kvarts-sericit-biotitrik metapelit utgör värdbergarten i alla gruvor förutom; FR där den utgörs av en beresitiserad felsisk vulkanit rik på plagioklas, sericit, biotit och kvarts med disseminerad pyrit; och NFE, HS, NG vilka har en mafisk tuffitisk moderbergart. Kvartsgångarna är mjölkvita med undantag för FE:s svarta, pyritförande kvarts vilket uppträder som sprickfyllnad i den bandade järnmalmen och är senare bildad. Kvartsen i KM är starkt dynamiskt omkristalliserad. Svag till måttlig foliation är vanlig i sidoberget med undantag av stark foliation i TG och NFE, vilka är lokaliserade i förkastningssprickor med stark kloritförskiffring av värdbergarten. Klorit-, zeolit-, karbonat-, hematit-, amfibol-, kalifältspat-, sericit-, biotit- och epidotomvandling förekommer i majoriteten av lokalerna. Malmmineralen är dominerande sprött deformerad subhedral till euhedral pyrit som kataklastiska aggregat eller band, interstitiell kopparkis i pyrit, markasit, magnetkis, guld och sporadiskt kopparkissjuk zinkblände och arsenikkis. I det här arbetet har även tetradymit, staurolit, blyglans och Ce-monazit observerats. Bismutinit och tetradymit i form av inneslutningar i pyrit observerades i AF, GKR, FR och TG. Guld observerades i AF, BR, GKR och TG som inneslutningar i pyrit eller fritt i kvarts med Au/Ag medianvärde på 78,41, avvikande är HS med värden mellan 4,66-5,25.    Förhållanden mellan spårelement i pyrit indikerar två typer av pyrit. Typ 1 funnen i FE och KM har följande värden: Co/Ni = 10,94, Bi/Au = 1,79, Bi/S = 0,037, Au/Ag = 11,13, S/Se = 235,96 och As/S = 0,006. Typ 2 funnen i NG, GKO, ST, TH, AF, NFE, HS, GKR, BR, FR, TG och som sliror i KM4 py1 har följande värden Co/Ni = 5,26, Bi/Au = 1,95, Bi/S = 0,031, Au/Ag = 4,19, S/Se = 0 and As/S = 0. δ34S värden styrker denna uppdelning där KM och FE har värdena 1,3-2,6 ‰ och AF 3,6-3,8 ‰. Den geologiska utvecklingen av fältet har tolkats som följande: FE-gruvans bandade järnmalm är den tidigaste mineraliseringen vilket följs utav uppsprickning och läkning av kvarts med pyrit typ 1 som också bildar kopparmineraliseringen KM. Senare sprickzoner efter Smålandsgraniternas intrusion läks av kvarts med pyrit typ 2 på mesozonalt djup vilket bildar NG, GKO, ST, TH, AF, NFE, GKR, BR, FR, TG och omkristalliserar och introducerar nya pyritsliror i kvartsen i KM. HS bildas möjligtvis sist eller har blivit omvandlad eftersom den är anrikad på silver. Morfologi, omvandlingar och svavelisotop-signaturer tyder på ett orogent ursprung för Ädelfors guldrika kvartsådror samt den kopparrika kvartsådern i KM.
750

Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash: as a case study, Tutuka dump site, South Africa

Akinyemi, Segun Ajayi January 2011 (has links)
Philosophiae Doctor - PhD / The management and disposal of huge volumes of coal combustion by products such as fly ash has constituted a major challenge to the environment. In most cases due to the inadequate alternative use of coal fly ash, the discarded waste is stored in holding ponds, slag heaps, or stock piled in ash dumps. This practice has raised concerns on the prospect of inorganic metals release to the surface and groundwater in the vicinity of the ash dump. Acceptable scientific studies are lacking to determine the best ash disposal practices. Moreover, knowledge about the mobility patterns of inorganic species as a function of mineralogical association or pH susceptibility of the dry disposed ash dump under natural weathering conditions are scarce in the literature. Fundamental understanding of chemical interactions of dry disposed ash with ingressed CO2 from atmosphere, percolating rain water and brine irrigation within ash disposal sites were seen as key areas requiring investigation. The mineralogical association of inorganic species in the dry disposed ash cores can be identified and quantified. This would provide a basis for understanding of chemical weathering, mineralogical transformations or mobility patterns of these inorganic species in the dry ash disposal scenario. The current study therefore aims to provide a comprehensive characterisation of weathered dry disposed ash cores, to reveal mobility patterns of chemical species as a function of depth and age of ash, with a view to assessing the potential environmental impacts. Fifty-nine samples were taken from 3 drilled cores obtained respectively from the 1 year, 8 year and 20-year-old sections of sequentially dumped, weathered, dry disposed ash in an ash dump site at Tutuka - a South African coal burning power station. The core samples were characterized using standard analytical procedures viz: X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) techniques, Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and Acid neutralisation capacity (ANC) test. A modified sequential extraction (SE) method was used in this study. The chemical partitioning, mobility and weathering patterns in 1 year, 8 year and 20-year-old sections of the ash dump were respectively investigated using this modified sequential extraction scheme. The sequence of the extractions was as follows: (1) water soluble, (2) exchangeable, (3) carbonate, (4) iron and manganese and (5) residual. The results obtained from the 5 steps sequential extraction scheme were validated with the total metal content of the original sample using mass balance method. The distribution of major and trace elements in the different liquid fractions obtained after each step of sequential extraction of the 59 drilled core samples was determined by inductively coupled plasma mass spectrometry (ICPMS). The data generated for various ash core samples were explored for the systematic analysis of mineralogical transformation and change in ash chemistry with ageing of the ash. Furthermore, the data was analyzed to reveal the impact of ingressed CO2 from atmosphere, infiltrating rain water and brine irrigation on the chemistry of ash core samples. Major mineral phases in original ash core samples prior to extraction are quartz (SiO2) and mullite (Al2O3·2SiO2). Other minor mineral phases identified were hematite (Fe2O3), calcite (CaCO3), lime (CaO), anorthite (CaAl2Si2O8), mica (Ca (Mg, Al)3 (Al3Si) O10 (OH)2), and enstatite (Mg2Si2O6). X-ray diffraction results show significant loss of crystallinity in the older ash cores. The presence of minor phases of calcite and mica in dry disposed ash cores are attributed to reduction in the pore water pH due to hydration, carbonation and pozzolanic reactions. The X-ray diffraction technique was unable to detect Fe-oxyhydroxide phase and morealuminosilicate phases in ash core samples due to their low abundance and amorphous character. X-ray fluorescence results of the original ash core samples showed the presence of major oxides, such as SiO2, Al2O3, Fe2O3, while CaO, K2O, TiO2, Na2O, MnO, MgO, P2O5, and SO3 occur in minor concentrations. The ratio of SiO2/Al2O3 classified the original core samples prior to extraction as a silico-aluminate class F fly ash. The ternary plot of major elements in 1-year-old ash core samples was both sialic and ferrocalsialic but 8 year and 20-year-old ash core samples were sialic in chemical composition. It is noteworthy that the mass % of SiO2 varies through the depth of the core with an increase of nearly 3 %, to 58 mass % of SiO2 at a depth of 6 m in the 1-year-old core whereas in the case of the 8-year-old core a 2 % increase of SiO2 to a level of 57.5 mass % can be observed at levels between 4-8 m, showing dissolution of major components in the matrix of older ash cores.. The Na2O content of the Tutuka ash cores was low and varied between 0.6-1.1 mass % for 1-year-old ash cores to around 0.6-0.8 mass % for 8-year-old ash cores. Sodium levels were higher in 1-year-old ash cores compared to 8 year and 20-year-old ashcores. Observed trends indicate that quick weathering of the ash (within a year) leached out Na+ from the ash dump. No evidence of Na+ encapsulation even though the ash dump was brine irrigated. Thus the dry disposal ash placement method does not result in a sustainable salt sink for Na-containing species over time. The total content of each of the elements in 1 year and 20-year-old ash cores was normalised with their total content in fresh ash from same power station to show enrichment and depletion factor. Major elements such as K+, Mn showed enrichment in 1-year-old ash cores whereas Al, Si, Na+, Ti, Ca, Mg, S and Fe showed depletion due to over time erosion. Trace elements such as Cr, Sr, P, Ba, Pb, V and Zn showed enrichment but Ni, Y, Zr showed depletion attributed to over time erosion. In 20-year-old ash cores, major elements such as Al, Na+ and Mn showed enrichment while Si, K+, Fe, Mg and Ca showed depletion highlighting their mobility. Trends indicated intensive flushing of major soluble components such as buffering constituents (CaO) by percolating rain water. The 1-year-old and 20-year-old coal ash cores showed a lower pH and greater loss/depletion of the soluble buffering constituents than the 2-week-old placed ash, indicating significant chemical weathering within a year. Based on ANC results the leaching behaviours of Ca, Mg, Na+, K+, Se, Cr, and Sr were found to be controlled by the pH of the leachant indicating high mobility of major soluble species in the ash cores when in contact with slightly acid rain water. Other investigated toxic metals such as As, Mo and Pb showed amphoteric behaviour with respect to the pH of the leachant. Chemical alterations and formation of transient minor secondary mineral phases was found to have a significant effect on the acid susceptibility and depletion pattern of chemical species in the core ash samples when compared to fresh ash. These ANC results correlated well with the data generated from the sequential extraction scheme. Based on sequential extraction results elements, showed noticeable mobility in the water soluble, exchangeable and carbonate fractions due to adsorption and desorption caused by variations in the pore water pH. In contrast, slight mobility of elements in the Fe and Mn, and residual fractions of dry disposed fly ashes are attributed to the co-precipitation and dissolution of minor amount of less soluble secondary phase overtime. The 1-year-old dry disposed ash cores were the least weathered among the 3 drilled ash cores. Therefore low concentration of toxic metals in older ash cores were ascribed to extensive weathering with slower release from residual mineral phases over time. Elements were found to associate with different mineral phases depending on the age or depth of the core samples showing greater heterogeneity in dispersion. For instance the average amount of total calcium in different mineral associations of 1-year-old ash cores is as follows; water soluble (10.2 %), exchangeable (37.04 %), carbonate (37.9 %), Fe and Mn (7.1 %) and residual (2.97 %). The amount of total Na+ in different mineral phases of 1-year-old ash cores followed this trend: water soluble (21 %), exchangeable (11.26 %), carbonate (2.6 %), Fe and Mn (4.7 %) and residual (53.9 %). The non-leachable portion of the total Na+ content (namely that contained in the residual fraction) in the 1-year-old ash core samples under conditions found in nature ranged between 5-91 %. This non-leachable portion of the Na+ showed the metastability of the mineral phases with which residual Na+ associates. Results showed older ash cores are enriched in toxic elements. Toxic elements such as As, B, Cr, Mo and Pb are enriched in the residual fraction of older ash cores. For instance As concentration in the residual fraction varied between 0.0003- 0.00043 mg kg-1 for 1-year-old ash cores to around 0.0003-0.0015 mg kg-1 for 20-year-old ash cores. This suggests that the older ash is enriched in toxic elements hence dust from the ash dump would be toxic to human health. The knowledge of mobility and ecotoxicological significance of coal fly ash is needed when considering its disposal or reuse in the environment. The mobility and ecotoxicology of inorganic metals in coal fly ash are determined by (i) mineralogical associations of inorganic species (ii) in-homogeneity in the ash dumps (iii) long and short term exposure to ingress CO2 and percolating rain water. Management issues such as inconsistent placement of ash in the dumps, poor choice of ash dump site, in-homogeneity in brine irrigation, no record of salt load put on the ash dumps and lack of proper monitoring requires improvement. The thesis provides justification for the use of the modified sequential extraction scheme as a predictive tool and could be employed in a similar research work. This thesis also proved that the dry ash disposal method was not environmental friendly in terms of overall leaching potential after significant chemical weathering. Moreover the study proved that the practice of brine co-disposal or irrigation on ash dumps is not sustainable as the ash dump did not act as a salt sink. / South Africa

Page generated in 0.0903 seconds