Spelling suggestions: "subject:"traitement duu langage"" "subject:"traitement dud langage""
31 |
On iterated learning for task-oriented dialogueSinghal, Soumye 01 1900 (has links)
Dans le traitement de langue et des système de dialogue, il est courant de pré-entraîner des modèles de langue sur corpus humain avant de les affiner par le biais d'un simulateur et de résolution de tâches. Malheuresement, ce type d'entrainement tend aussi à induire un phénomène connu sous le nom de dérive du langage. Concrétement, les propriétés syntaxiques et sémantiques de la langue intiallement apprise se détériorent: les agents se concentrent uniquement sur la résolution de la tâche, et non plus sur la préservation de la langue. En s'inspirant des travaux en sciences cognitives, et notamment l'apprentigssage itératif Kirby and Griffiths (2014), nous proposons ici une approche générique pour contrer cette dérive du langage. Nous avons appelé cette méthode Seeded iterated learning (SIL), ou apprentissage itératif capitalisé. Ce travail a été publié sous le titre (Lu et al., 2020b) et est présenté au chapitre 2. Afin d'émuler la transmission de la langue entre chaque génération d'agents, un agent étudiant est d'abord pré-entrainé avant d'être affiné de manière itérative, et ceci, en imitant des données échantillonnées à partir d'un agent enseignant nouvellement formé. À chaque génération, l'enseignant est créé en copiant l'agent étudiant, avant d'être de nouveau affiné en maximisant le taux de réussite de la tâche sous-jacente. Dans un second temps, nous présentons Supervised Seeded iterated learning (SSIL) dans le chapitre 3, où apprentissage itératif capitalisé avec supervision, qui a été publié sous le titre (Lu et al., 2020b). SSIL s'appuie sur SIL en le combinant avec une autre méthode populaire appelée Supervised SelfPlay (S2P) (Gupta et al., 2019), où apprentissage supervisé par auto-jeu. SSIL est capable d'atténuer les problèmes de S2P et de SIL, i.e. la dérive du langage dans les dernier stades de l'entrainement tout en préservant une plus grande diversité linguistique.
Tout d'abord, nous évaluons nos méthodes dans sous la forme d'une preuve de concept à traver le Jeu de Lewis avec du langage synthetique. Dans un second temps, nous l'étendons à un jeu de traduction se utilisant du langage naturel. Dans les deux cas, nous soulignons l'efficacité de nos méthodes par rapport aux autres méthodes de la litterature.
Dans le chapitre 1, nous discutons des concepts de base nécessaires à la compréhension des articles présentés dans les chapitres 2 et 3. Nous décrivons le problème spécifique du dialogue orienté tâche, y compris les approches actuelles et les défis auxquels ils sont confrontés : en particulier, la dérive linguistique. Nous donnons également un aperçu du cadre d'apprentissage itéré. Certaines sections du chapitre 1 sont empruntées aux articles pour des raisons de cohérence et de facilité de compréhension. Le chapitre 2 comprend les travaux publiés sous le nom de (Lu et al., 2020b) et le chapitre 3 comprend les travaux publiés sous le nom de (Lu et al., 2020a), avant de conclure au chapitre 4. / In task-oriented dialogue, pretraining on human corpus followed by finetuning in a
simulator using selfplay suffers from a phenomenon called language drift. The syntactic
and semantic properties of the learned language deteriorates as the agents only focuses
on solving the task. Inspired by the iterative learning framework in cognitive science
Kirby and Griffiths (2014), we propose a generic approach to counter language drift called
Seeded iterated learning (SIL). This work was published as (Lu et al., 2020b) and is
presented in Chapter 2. In an attempt to emulate transmission of language between generations,
a pretrained student agent is iteratively refined by imitating data sampled from
a newly trained teacher agent. At each generation, the teacher is created by copying the
student agent, before being finetuned to maximize task completion.We further introduce
Supervised Seeded iterated learning (SSIL) in Chapter 3, work which was published as
(Lu et al., 2020a). SSIL builds upon SIL by combining it with the other popular method
called Supervised SelfPlay (S2P) (Gupta et al., 2019). SSIL is able to mitigate the
problems of both S2P and SIL namely late-stage training collapse and low language diversity.
We evaluate our methods in a toy setting of Lewis Game, and then scale it up to
the translation game with natural language. In both settings, we highlight the efficacy of
our methods compared to the baselines.
In Chapter 1, we talk about the core concepts required for understanding the papers presented
in Chapters 2 and 3. We describe the specific problem of task-oriented dialogue
including current approaches and the challenges they face: particularly, the challenge
of language drift. We also give an overview of the iterated learning framework. Some
sections in Chapter 1 are borrowed from the papers for coherence and ease of understanding.
Chapter 2 comprises of the work published as (Lu et al., 2020b) and Chapter 3
comprises of the work published as (Lu et al., 2020a). Chapter 4 gives a conclusion on
the work.
|
32 |
Self-disclosure model for classifying & predicting text-based online disclosureVedantham, Ramyasree 06 1900 (has links)
Les médias sociaux et les sites de réseaux sociaux sont devenus des babillards numériques pour les internautes à cause de leur évolution accélérée. Comme ces sites encouragent les consommateurs à exposer des informations personnelles via des profils et des publications, l'utilisation accrue des médias sociaux a généré des problèmes d’invasion de la vie privée. Des chercheurs ont fait de nombreux efforts pour détecter l'auto-divulgation en utilisant des techniques d'extraction d'informations. Des recherches récentes sur l'apprentissage automatique et les méthodes de traitement du langage naturel montrent que la compréhension du sens contextuel des mots peut entraîner une meilleure précision que les méthodes d'extraction de données traditionnelles.
Comme mentionné précédemment, les utilisateurs ignorent souvent la quantité d'informations personnelles publiées dans les forums en ligne. Il est donc nécessaire de détecter les diverses divulgations en langage naturel et de leur donner le choix de tester la possibilité de divulgation avant de publier.
Pour ce faire, ce travail propose le « SD_ELECTRA », un modèle de langage spécifique au contexte. Ce type de modèle détecte les divulgations d'intérêts, de données personnelles, d'éducation et de travail, de relations, de personnalité, de résidence, de voyage et d'accueil dans les données des médias sociaux. L'objectif est de créer un modèle linguistique spécifique au contexte sur une plate-forme de médias sociaux qui fonctionne mieux que les modèles linguistiques généraux.
De plus, les récents progrès des modèles de transformateurs ont ouvert la voie à la formation de modèles de langage à partir de zéro et à des scores plus élevés. Les résultats expérimentaux montrent que SD_ELECTRA a surpassé le modèle de base dans toutes les métriques considérées pour la méthode de classification de texte standard. En outre, les résultats montrent également que l'entraînement d'un modèle de langage avec un corpus spécifique au contexte de préentraînement plus petit sur un seul GPU peut améliorer les performances.
Une application Web illustrative est conçue pour permettre aux utilisateurs de tester les possibilités de divulgation dans leurs publications sur les réseaux sociaux. En conséquence, en utilisant l'efficacité du modèle suggéré, les utilisateurs pourraient obtenir un apprentissage en temps réel sur l'auto-divulgation. / Social media and social networking sites have evolved into digital billboards for internet users due to their rapid expansion. As these sites encourage consumers to expose personal information via profiles and postings, increased use of social media has generated privacy concerns. There have been notable efforts from researchers to detect self-disclosure using Information extraction (IE) techniques. Recent research on machine learning and natural language processing methods shows that understanding the contextual meaning of the words can result in better accuracy than traditional data extraction methods.
Driven by the facts mentioned earlier, users are often ignorant of the quantity of personal information published in online forums, there is a need to detect various disclosures in natural language and give them a choice to test the possibility of disclosure before posting.
For this purpose, this work proposes "SD_ELECTRA," a context-specific language model to detect Interest, Personal, Education and Work, Relationship, Personality, Residence, Travel plan, and Hospitality disclosures in social media data. The goal is to create a context-specific language model on a social media platform that performs better than the general language models.
Moreover, recent advancements in transformer models paved the way to train language models from scratch and achieve higher scores. Experimental results show that SD_ELECTRA has outperformed the base model in all considered metrics for the standard text classification method. In addition, the results also show that training a language model with a smaller pre-training context-specific corpus on a single GPU can improve its performance.
An illustrative web application designed allows users to test the disclosure possibilities in their social media posts. As a result, by utilizing the efficiency of the suggested model, users would be able to get real-time learning on self-disclosure.
|
33 |
Neural approaches to dialog modelingSankar, Chinnadhurai 08 1900 (has links)
Cette thèse par article se compose de quatre articles qui contribuent au domaine de l’apprentissage profond, en particulier dans la compréhension et l’apprentissage des ap- proches neuronales des systèmes de dialogue. Le premier article fait un pas vers la compréhension si les architectures de dialogue neuronal couramment utilisées capturent efficacement les informations présentes dans l’historique des conversations. Grâce à une série d’expériences de perturbation sur des ensembles de données de dialogue populaires, nous constatons que les architectures de dialogue neuronal couramment utilisées comme les modèles seq2seq récurrents et basés sur des transformateurs sont rarement sensibles à la plupart des perturbations du contexte d’entrée telles que les énoncés manquants ou réorganisés, les mots mélangés, etc.
Le deuxième article propose d’améliorer la qualité de génération de réponse dans les systèmes de dialogue de domaine ouvert en modélisant conjointement les énoncés avec les attributs de dialogue de chaque énoncé. Les attributs de dialogue d’un énoncé se réfèrent à des caractéristiques ou des aspects discrets associés à un énoncé comme les actes de dialogue, le sentiment, l’émotion, l’identité du locuteur, la personnalité du locuteur, etc.
Le troisième article présente un moyen simple et économique de collecter des ensembles de données à grande échelle pour modéliser des systèmes de dialogue orientés tâche. Cette approche évite l’exigence d’un schéma d’annotation d’arguments complexes. La version initiale de l’ensemble de données comprend 13 215 dialogues basés sur des tâches comprenant six domaines et environ 8 000 entités nommées uniques, presque 8 fois plus que l’ensemble de données MultiWOZ populaire. / This thesis by article consists of four articles which contribute to the field of deep learning, specifically in understanding and learning neural approaches to dialog systems. The first article takes a step towards understanding if commonly used neural dialog architectures effectively capture the information present in the conversation history. Through a series of perturbation experiments on popular dialog datasets, wefindthatcommonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most input context perturbations such as missing or reordering utterances, shuffling words, etc.
The second article introduces a simple and cost-effective way to collect large scale datasets for modeling task-oriented dialog systems. This approach avoids the requirement of a com-plex argument annotation schema. The initial release of the dataset includes 13,215 task-based dialogs comprising six domains and around 8k unique named entities, almost 8 times more than the popular MultiWOZ dataset.
The third article proposes to improve response generation quality in open domain dialog systems by jointly modeling the utterances with the dialog attributes of each utterance. Dialog attributes of an utterance refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment, emotion, speaker identity, speaker personality, etc.
The final article introduces an embedding-free method to compute word representations on-the-fly. This approach significantly reduces the memory footprint which facilitates de-ployment in on-device (memory constraints) devices. Apart from being independent of the vocabulary size, we find this approach to be inherently resilient to common misspellings.
|
Page generated in 0.1276 seconds