11 |
Architectural Principles for Database Systems on Storage-Class MemoryOukid, Ismail 05 December 2017 (has links)
Database systems have long been optimized to hide the higher latency of storage media, yielding complex persistence mechanisms. With the advent of large DRAM capacities, it became possible to keep a full copy of the data in DRAM. Systems that leverage this possibility, such as main-memory databases, keep two copies of the data in two different formats: one in main memory and the other one in storage. The two copies are kept synchronized using snapshotting and logging. This main-memory-centric architecture yields nearly two orders of magnitude faster analytical processing than traditional, disk-centric ones. The rise of Big Data emphasized the importance of such systems with an ever-increasing need for more main memory. However, DRAM is hitting its scalability limits: It is intrinsically hard to further increase its density.
Storage-Class Memory (SCM) is a group of novel memory technologies that promise to alleviate DRAM’s scalability limits. They combine the non-volatility, density, and economic characteristics of storage media with the byte-addressability and a latency close to that of DRAM. Therefore, SCM can serve as persistent main memory, thereby bridging the gap between main memory and storage. In this dissertation, we explore the impact of SCM as persistent main memory on database systems. Assuming a hybrid SCM-DRAM hardware architecture, we propose a novel software architecture for database systems that places primary data in SCM and directly operates on it, eliminating the need for explicit IO. This architecture yields many benefits: First, it obviates the need to reload data from storage to main memory during recovery, as data is discovered and accessed directly in SCM. Second, it allows replacing the traditional logging infrastructure by fine-grained, cheap micro-logging at data-structure level. Third, secondary data can be stored in DRAM and reconstructed during recovery. Fourth, system runtime information can be stored in SCM to improve recovery time. Finally, the system may retain and continue in-flight transactions in case of system failures.
However, SCM is no panacea as it raises unprecedented programming challenges. Given its byte-addressability and low latency, processors can access, read, modify, and persist data in SCM using load/store instructions at a CPU cache line granularity. The path from CPU registers to SCM is long and mostly volatile, including store buffers and CPU caches, leaving the programmer with little control over when data is persisted. Therefore, there is a need to enforce the order and durability of SCM writes using persistence primitives, such as cache line flushing instructions. This in turn creates new failure scenarios, such as missing or misplaced persistence primitives.
We devise several building blocks to overcome these challenges. First, we identify the programming challenges of SCM and present a sound programming model that solves them. Then, we tackle memory management, as the first required building block to build a database system, by designing a highly scalable SCM allocator, named PAllocator, that fulfills the versatile needs of database systems. Thereafter, we propose the FPTree, a highly scalable hybrid SCM-DRAM persistent B+-Tree that bridges the gap between the performance of transient and persistent B+-Trees. Using these building blocks, we realize our envisioned database architecture in SOFORT, a hybrid SCM-DRAM columnar transactional engine. We propose an SCM-optimized MVCC scheme that eliminates write-ahead logging from the critical path of transactions. Since SCM -resident data is near-instantly available upon recovery, the new recovery bottleneck is rebuilding DRAM-based data. To alleviate this bottleneck, we propose a novel recovery technique that achieves nearly instant responsiveness of the database by accepting queries right after recovering SCM -based data, while rebuilding DRAM -based data in the background. Additionally, SCM brings new failure scenarios that existing testing tools cannot detect. Hence, we propose an online testing framework that is able to automatically simulate power failures and detect missing or misplaced persistence primitives. Finally, our proposed building blocks can serve to build more complex systems, paving the way for future database systems on SCM.
|
12 |
Improving Cryptocurrency Blockchain Security and Availability Adaptive Security and PartitioningHood, Kendric A. 27 July 2020 (has links)
No description available.
|
13 |
High-performant, Replicated, Queue-oriented Transaction Processing Systems on Modern Computing InfrastructuresThamir Qadah (11132985) 27 July 2021 (has links)
With the shifting landscape of computing hardware architectures and the emergence of new computing environments (e.g., large main-memory systems, hundreds of CPUs, distributed and virtualized cloud-based resources), state-of-the-art designs of transaction processing systems that rely on conventional wisdom suffer from lost performance optimization opportunities. This dissertation challenges conventional wisdom to rethink the design and implementation of transaction processing systems for modern computing environments.<div><br></div><div>We start by tackling the vertical hardware scaling challenge, and propose a deterministic approach to transaction processing on emerging multi-sockets, many-core, shared memory architecture to harness its unprecedented available parallelism. Our proposed priority-based queue-oriented transaction processing architecture eliminates the transaction contention footprint and uses speculative execution to improve the throughput of centralized deterministic transaction processing systems. We build QueCC and demonstrate up to two orders of magnitude better performance over the state-of-the-art.<br></div><div><br></div><div>We further tackle the horizontal scaling challenge and propose a distributed queue-oriented transaction processing engine that relies on queue-oriented communication to eliminate the traditional overhead of commitment protocols for multi-partition transactions. We build Q-Store, and demonstrate up to 22x improvement in system throughput over the state-of-the-art deterministic transaction processing systems.<br></div><div><br></div><div>Finally, we propose a generalized framework for designing distributed and replicated deterministic transaction processing systems. We introduce the concept of speculative replication to hide the latency overhead of replication. We prototype the speculative replication protocol in QR-Store and perform an extensive experimental evaluation using standard benchmarks. We show that QR-Store can achieve a throughput of 1.9 million replicated transactions per second in under 200 milliseconds and a replication overhead of 8%-25%compared to non-replicated configurations.<br></div>
|
14 |
Commit Processing In Distributed On-Line And Real-Time Transaction Processing SystemsGupta, Ramesh Kumar 03 1900 (has links) (PDF)
No description available.
|
15 |
エージェント概念に基づいた長時間トランザクション・モデルの研究渡辺, 豊英, 佐川, 雄二, 朝倉, 宏一 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(B)(2) 課題番号:09480074 研究代表者:渡辺 豊英 研究期間:1997-1999年度
|
16 |
A data management and analytic model for business intelligence applicationsBanda, Misheck 05 1900 (has links)
Most organisations use several data management and business intelligence solutions which are on-premise and, or cloud-based to manage and analyse their constantly growing business data. Challenges faced by organisations nowadays include, but are not limited to growth limitations, big data, inadequate analytics, computing, and data storage capabilities. Although these organisations are able to generate reports and dashboards for decision-making in most cases, effective use of their business data and an appropriate business intelligence solution could achieve and retain informed decision-making and allow competitive reaction to the dynamic external environment. A data management and analytic model has been proposed on which organisations could rely for decisive guidance when planning to procure and implement a unified business intelligence solution. To achieve a sound model, literature was reviewed by extensively studying business intelligence in general, and exploring and developing various deployment models and architectures consisting of naïve, on-premise, and cloud-based which revealed their benefits and challenges. The outcome of the literature review was the development of a hybrid business intelligence model and the accompanying architecture as the main contribution to the study.In order to assess the state of business intelligence utilisation, and to validate and improve the proposed architecture, two case studies targeting users and experts were conducted using quantitative and qualitative approaches. The case studies found and established that a decision to procure and implement a successful business intelligence solution is based on a number of crucial elements, such as, applications, devices, tools, business intelligence services, data management and infrastructure. The findings further recognised that the proposed hybrid architecture is the solution for managing complex organisations with serious data challenges. / Computing / M. Sc. (Computing)
|
17 |
Datové sklady a OLAP v prostředí MS SQL Serveru / Data Warehouses and OLAP in MS SQL Server EnvironmentMadron, Lukáš January 2008 (has links)
This paper deals with data warehouses and OLAP. These technologies are defined and described here. Then an introduction of the architecture of product MS SQL Server and its tools for work with data warehouses and OLAP folow. The knowledge gained is used for creation of sample application.
|
Page generated in 0.1617 seconds