• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 12
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structure-based Targeting of Transcriptional Regulatory Complexes Implicated in Human Disease: A Dissertation

Hilbert, Brendan J. 19 July 2013 (has links)
Transcriptional regulatory complexes control gene expression patterns and permit cellular responses to stimuli. Deregulation of complex components upsets target gene expression and can lead to disease. This dissertation examines proteins involved in two distinct regulatory complexes: C-terminal binding protein (CtBP) 1 and 2, and Interferon Regulatory Factors (IRF) 3 and 5. Although critical in developmental processes and injury response, CtBP transcriptional repression of cell adhesion proteins, pro-apoptotic factors, and tumor suppressors has been linked to the pathogenesis of multiple forms of cancer. IRFs function in the immune system and have been implicated in autoimmune disorders. Understanding IRF activation is critical to treating pathogens that target IRF function or for future autoimmune disease therapies. We attempted to determine crystal structures that would provide the details of IRF activation, allowing insight into mechanisms of pathogen immune evasion and autoimmune disorders. Although no new structures were solved, we have optimized expression of C-terminal IRF-3 / co-activator complexes, as well as full-length IRF3 and IRF5 constructs. Modifying the constructs coupled with new crystal screening will soon result in structures which detail IRF activation, advancing understanding of the roles of IRF family members in disease. Through structural and biochemical characterization we sought to identify and develop inhibitors of CtBP transcriptional regulatory functions. High concentrations of CtBP substrate, 4-Methylthio 2-oxobutyric acid (MTOB), have been shown in different cancer models to interfere with CtBP transcriptional regulation. We began the process of structure based drug design by solving crystal structures of both CtBP family members bound to MTOB. The resulting models identified critical ligand contacts and unique active site features, which were utilized in inhibitor design. Potential CtBP inhibitors were identified and co-crystallized with CtBP1. One such compound binds to CtBP more than 1000 times more tightly than does MTOB, as a result of our structure-based inclusion of a phenyl ring and a novel pattern of hydrogen bonding. This molecule provides a starting point for the development of compounds that will both bind more tightly and interfere with transcriptional signaling as we progress towards pharmacologically targeting CtBP as a therapy for specific cancers.
12

Dysregulation of Transcription Factor Networks Unveils Different Pathways in Human Papillomavirus 16-Positive Squamous Cell Carcinoma and Adenocarcinoma of the Uterine Cervix

Bispo, Saloe, Farias, Ticiana D., de Araujo-Souza, Patricia Savio, Cintra, Ricardo, dos Santos, Hellen Geremias, Jorge, Natasha Andressa Nogueira, Castro, Mauro Antônio Alves, Wajnberg, Gabriel, de Miranda Scherer, Nicole, Genta, Maria Luiza Nogueira Dias, Carvalho, Jesus Paula, Villa, Luisa Lina, Sichero, Laura, Passetti, Fabio 28 March 2023 (has links)
Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) are the most common histological types of cervical cancer (CC). The worse prognosis of ADC cases highlights the need for better molecular characterization regarding differences between these CC types. RNA-Seq analysis of seven SCC and three ADC human papillomavirus 16-positive samples and the comparison with public data from non-tumoral human papillomavirus-negative cervical tissue samples revealed pathways exclusive to each histological type, such as the epithelial maintenance in SCC and the maturity-onset diabetes of the young (MODY) pathway in ADC. The transcriptional regulatory network analysis of cervical SCC samples unveiled a set of six transcription factor (TF) genes with the potential to positively regulate long non-coding RNA genes DSG1-AS1, CALML3-AS1, IGFL2-AS1, and TINCR. Additional analysis revealed a set of MODY TFs regulated in the sequence predicted to be repressed bymiR-96-5p ormiR-28-3p in ADC. These microRNAs were previously described to target LINC02381, which was predicted to be positively regulated by two MODY TFs upregulated in cervical ADC. Therefore, we hypothesize LINC02381might act by decreasing the levels ofmiR-96-5p andmiR-28-3p, promoting the MODY activation in cervical ADC. The novel TF networks here described should be explored for the development of more efficient diagnostic tools.
13

Computational Methods for Inferring Transcription Factor Binding Sites

Morozov, Vyacheslav 11 October 2012 (has links)
Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in DNA sequences. PWMs are compiled from experimentally verified and aligned binding sequences. PWMs are then used to computationally discover novel putative binding sites for a given protein. DNA-binding proteins often show degeneracy in their binding requirement, the overall binding specificity of many proteins is unknown and remains an active area of research. Although PWMs are more reliable predictors than consensus string matching, they generally result in a high number of false positive hits. A previous study introduced a novel method to PWM training based on the known motifs to sample additional putative binding sites from a proximal promoter area. The core idea was further developed, implemented and tested in this thesis with a large scale application. Improved mono- and dinucleotide PWMs were computed for Drosophila melanogaster. The Matthews correlation coefficient was used as an optimization criterion in the PWM refinement algorithm. New PWMs keep an account of non-uniform background nucleotide distributions on the promoters and consider a larger number of new binding sites during the refinement steps. The optimization included the PWM motif length, the position on the promoter, the threshold value and the binding site location. The obtained predictions were compared for mono- and dinucleotide PWM versions with initial matrices and with conventional tools. The optimized PWMs predicted new binding sites with better accuracy than conventional PWMs.
14

Identification des réseaux transcriptionnnels de résistance aux antifongiques chez Candida albicans

Znaidi, Sadri 10 1900 (has links)
Plusieurs souches cliniques de Candida albicans résistantes aux médicaments antifongiques azolés surexpriment des gènes encodant des effecteurs de la résistance appartenant à deux classes fonctionnelles : i) des transporteurs expulsant les azoles, CDR1, CDR2 et MDR1 et ii) la cible des azoles 14-lanostérol déméthylase encodée par ERG11. La surexpression de ces gènes est due à la sélection de mutations activatrices dans des facteurs de transcription à doigts de zinc de la famille zinc cluster (Zn2Cys6) qui contrôlent leur expression : Tac1p (Transcriptional activator of CDR genes 1) contrôlant l’expression de CDR1 et CDR2, Mrr1p (Multidrug resistance regulator 1), régulant celle de MDR1 et Upc2p (Uptake control 2), contrôlant celle d’ERG11. Un autre effecteur de la résistance clinique aux azoles est PDR16, encodant une transférase de phospholipides, dont la surexpression accompagne souvent celle de CDR1 et CDR2, suggérant que les trois gènes appartiennent au même régulon, potentiellement celui de Tac1p. De plus, la régulation transcriptionnelle du gène MDR1 ne dépend pas seulement de Mrr1p, mais aussi du facteur de transcription de la famille basic-leucine zipper Cap1p (Candida activator protein 1), un régulateur majeur de la réponse au stress oxydatif chez C. albicans qui, lorsque muté, induit une surexpression constitutive de MDR1 conférant la résistance aux azoles. Ces observations suggèrent qu’un réseau de régulation transcriptionnelle complexe contrôle le processus de résistance aux antifongiques azolés chez C. albicans. L’objectif de mon projet au doctorat était d’identifier les cibles transcriptionnelles directes des facteurs de transcription Tac1p, Upc2p et Cap1p, en me servant d’approches génétiques et de génomique fonctionnelle, afin de i) caractériser leur réseau transcriptionnel et les modules transcriptionnels qui sont sous leur contrôle direct, et ii) d’inférer leurs fonctions biologiques et ainsi mieux comprendre leur rôle dans la résistance aux azoles. Dans un premier volet, j’ai démontré, par des expériences de génétique, que Tac1p contrôle non seulement la surexpression de CDR1 et CDR2 mais aussi celle de PDR16. Mes résultats ont identifié une nouvelle mutation activatrice de Tac1p (N972D) et ont révélé la participation d’un autre régulateur dans le contrôle transcriptionnel de CDR1 et PDR16 dont l’identité est encore inconnue. Une combinaison d’expériences de transcriptomique et d’immunoprécipitation de la chromatine couplée à l’hybridation sur des biopuces à ADN (ChIP-chip) m’a permis d’identifier plusieurs gènes dont l’expression est contrôlée in vivo et directement par Tac1p (PDR16, CDR1, CDR2, ERG2, autres), Upc2p (ERG11, ERG2, MDR1, CDR1, autres) et Cap1p (MDR1, GCY1, GLR1, autres). Ces expériences ont révélé qu’Upc2p ne contrôle pas seulement l’expression d’ERG11, mais aussi celle de MDR1 et CDR1. Plusieurs nouvelles propriétés fonctionnelles de ces régulateurs ont été caractérisées, notamment la liaison in vivo de Tac1p aux promoteurs de ses cibles de façon constitutive et indépendamment de son état d’activation, et la liaison de Cap1p non seulement à la région du promoteur de ses cibles, mais aussi celle couvrant le cadre de lecture ouvert et le terminateur transcriptionnel putatif, suggérant une interaction physique avec la machinerie de la transcription. La caractérisation du réseau transcriptionnel a révélé une interaction fonctionnnelle entre ces différents facteurs, notamment Cap1p et Mrr1p, et a permis d’inférer des fonctions biologiques potentielles pour Tac1p (trafic et la mobilisation des lipides, réponse au stress oxydatif et osmotique) et confirmer ou proposer d’autres fonctions pour Upc2p (métabolisme des stérols) et Cap1p (réponse au stress oxydatif, métabolisme des sources d’azote, transport des phospholipides). Mes études suggèrent que la résistance aux antifongiques azolés chez C. albicans est intimement liée au métabolisme des lipides membranaires et à la réponse au stress oxydatif. / Many azole resistant Candida albicans clinical isolates overexpress genes encoding azole resistance effectors that belong to two functional categories: i) CDR1, CDR2 and MDR1, encoding azole-efflux transporters and ii) ERG11, encoding the target of azoles 14-lanosterol demethylase. The constitutive overexpression of these genes is due to activating mutations in transcription factors of the zinc cluster family (Zn2Cys6) which control their expression. Tac1p (Transcriptional activator of CDR genes 1), controlling the expression of CDR1 and CDR2, Mrr1p (Multidrug resistance regulator 1), regulating MDR1 expression and Upc2p (Uptake control 2), controlling the expression of ERG11. Another determinant of clinical azole resistance is PDR16, encoding a phospholipid transferase, whose overexpression often accompanies that of CDR1 and CDR2 in clinical isolates, suggesting that the three genes belong to the same regulon, potentially that of Tac1p. Further, MDR1 expression is not only regulated by Mrr1p, but also by the basic-leucine zipper transcription factor Cap1p (Candida activator protein 1), which controls the oxidative stress response in C. albicans and whose mutation confers azole resistance via MDR1 overexpression. These observations suggest that a complex transcriptional regulatory network controls azole resistance in C. albicans. My Ph.D. studies are aimed at identifying the direct transcriptional targets of Tac1p, Upc2p and Cap1p using genetics and functional genomics approches in order to i) characterize their regulatory network and the transcriptional modules under their direct control and ii) infer their biological functions and better understand their roles in azole resistance. In the first part of my studies, I showed that Tac1p does not only control the expression of CDR1 and CDR2, but also that of PDR16. My results also identified a new activating mutation in Tac1p (N972D) and revealed that the expression of CDR1 and PDR16 is under the control of another yet unknown regulator. The combination of transcriptomics and genome-wide location (ChIP-chip) approaches allowed me to identify the in vivo direct targets of Tac1p (PDR16, CDR1, CDR2, ERG2, others), Upc2p (ERG11, ERG2, MDR1, CDR1, others) and Cap1p (MDR1, GCY1, GLR1, others). These results also revealed that Upc2p does not only control the expression of ERG11 but also that of MDR1 and CDR1. Many new functional features of these transcription factors were found, including the constitutive binding of Tac1p to its targets under both activating and non-activating conditions, and the binding of Cap1p which extends beyond the promoter region of its target genes, to cover the open reading frame and the putative transcription termination regions, suggesting a physical interaction with the transcriptional machinery. The characterization of the transcriptional regulatory network revealed a functional interaction between these factors, notably between Cap1p and Mrr1p, and inferred potential biological functions for Tac1p (lipid mobilization and traffic, response to oxidative and osmotic stress) and confirmed or suggested other functions for Upc2p (sterol metabolism) and Cap1p (oxidative stress response, regulation of nitrogen utilization and phospholipids transport). Taken together, my results suggest that azole resistance in C. albicans is tightly linked to membrane lipid metabolism and oxidative stress response.
15

Activité des cellules souches : identification de nouveaux effecteurs dans le système hématopoïétique

Deneault, Eric 11 1900 (has links)
Les cellules souches somatiques présentent habituellement un comportement très différent des cellules souches pluripotentes. Les bases moléculaires de l’auto-renouvellement des cellules souches embryonnaires ont été récemment déchiffrées grâce à la facilité avec laquelle nous pouvons maintenant les purifier et les maintenir en culture durant de longues périodes de temps. Par contre, il en va tout autrement pour les cellules souches hématopoïétiques. Dans le but d’en apprendre davantage sur le fonctionnement moléculaire de l’auto-renouvellement des cellules souches hématopoïétiques, j’ai d’abord conçu une nouvelle méthode de criblage gain-de-fonction qui répond aux caprices particuliers de ces cellules. Partant d’une liste de plus de 700 facteurs nucléaires et facteurs de division asymétrique candidats, j’ai identifié 24 nouveaux facteurs qui augmentent l’activité des cellules souches hématopoïétiques lorsqu’ils sont surexprimés. J’ai par la suite démontré que neuf de ces facteurs agissent de manière extrinsèque aux cellules souches hématopoïétiques, c’est-à-dire que l’effet provient des cellules nourricières modifiées en co-culture. J’ai également mis à jour un nouveau réseau de régulation de transcription qui implique cinq des facteurs identifiés, c’est-à-dire PRDM16, SPI1, KLF10, FOS et TFEC. Ce réseau ressemble étrangement à celui soutenant l’ostéoclastogénèse. Ces résultats soulèvent l’hypothèse selon laquelle les ostéoclastes pourraient aussi faire partie de la niche fonctionnelle des cellules souches hématopoïétiques dans la moelle osseuse. De plus, j’ai identifié un second réseau de régulation impliquant SOX4, SMARCC1 et plusieurs facteurs identifiés précédemment dans le laboratoire, c’est-à-dire BMI1, MSI2 et KDM5B. D’autre part, plusieurs indices accumulés tendent à démontrer qu’il existe des différences fondamentales entre le fonctionnement des cellules souches hématopoïétiques murines et humaines. / Somatic stem cells usually exhibit a very different behavior compared to pluripotent stem cells. The molecular basis of embryonic stem cell self-renewal was recently decrypted by the relative straightforwardness with which we can now purify and maintain these cells in culture for long periods of time. However, this is not the case with hematopoietic stem cells. In order to elucidate the molecular mechanisms of hematopoietic stem cell self-renewal, I developed a novel gain-of-function screening strategy, which bypasses some constraints found with these cells. Starting from a list of more than 700 candidate nuclear factors and asymmetric division factors, I have identified 24 new factors that increase hematopoietic stem cell activity when overexpressed. I have also found that nine of these factors act extrinsically to hematopoietic stem cells, i.e., the effect comes from the engineered feeder cells in co-culture. Moreover, I have revealed a new transcriptional regulatory network including five of the factors identified, i.e., PRDM16, SPI1, KLF10, FOS and TFEC. This network is particularly similar to that involved in osteoclastogenesis. These results raise the hypothesis that osteoclasts might also be part of the functional hematopoietic stem cell niche in the bone marrow. Furthermore, I have identified a second regulatory network involving SOX4, SMARCC1 and several factors previously identified in the laboratory, i.e., BMI1, MSI2 and KDM5B. Besides, several lines of evidence tend to show that there are fundamental differences between mouse and human hematopoietic stem cells.
16

Computational Methods for Inferring Transcription Factor Binding Sites

Morozov, Vyacheslav 11 October 2012 (has links)
Position weight matrices (PWMs) have become a tool of choice for the identification of transcription factor binding sites in DNA sequences. PWMs are compiled from experimentally verified and aligned binding sequences. PWMs are then used to computationally discover novel putative binding sites for a given protein. DNA-binding proteins often show degeneracy in their binding requirement, the overall binding specificity of many proteins is unknown and remains an active area of research. Although PWMs are more reliable predictors than consensus string matching, they generally result in a high number of false positive hits. A previous study introduced a novel method to PWM training based on the known motifs to sample additional putative binding sites from a proximal promoter area. The core idea was further developed, implemented and tested in this thesis with a large scale application. Improved mono- and dinucleotide PWMs were computed for Drosophila melanogaster. The Matthews correlation coefficient was used as an optimization criterion in the PWM refinement algorithm. New PWMs keep an account of non-uniform background nucleotide distributions on the promoters and consider a larger number of new binding sites during the refinement steps. The optimization included the PWM motif length, the position on the promoter, the threshold value and the binding site location. The obtained predictions were compared for mono- and dinucleotide PWM versions with initial matrices and with conventional tools. The optimized PWMs predicted new binding sites with better accuracy than conventional PWMs.
17

Pou5f1 Post-translational Modifications Modulate Gene Expression and Cell Fate

Campbell, Pearl 20 December 2012 (has links)
Embryonic stem cells (ESCs) are characterized by their unlimited capacity for self-renewal and the ability to contribute to every lineage of the developing embryo. The promoters of developmentally regulated loci within these cells are marked by coincident epigenetic modifications of gene activation and repression, termed bivalent domains. Trithorax group (TrxG) and Polycomb Group (PcG) proteins respectively place these epigenetic marks on chromatin and extensively colocalize with Oct4 in ESCs. Although it appears that these cells are poised and ready for differentiation, the switch that permits this transition is critically held in check. The derepression of bivalent domains upon knockdown of Oct4 or PcG underscores their respective roles in maintaining the pluripotent state through epigenetic regulation of chromatin structure. The mechanisms that facilitate the recruitment and retention of Oct4, TrxG, and PcG proteins at developmentally regulated loci to maintain the pluripotent state, however, remain unknown. Oct4 may function as either a transcriptional activator or repressor. Prevailing thought holds that both of these activities are required to maintain the pluripotent state through activation of genes implicated in pluripotency and cell-cycle control with concomitant repression of genes required for differentiation and lineage-specific differentiation. More recent evidence however, suggests that the activator function of Oct4 may play a more critical role in maintaining the pluripotent state (Hammachi et al., 2012). The purpose of the studies described in this dissertation was to clarify the underlying mechanisms by which Oct4 functions in transcriptional activation and repression. By so doing, we wished to contextualize its role in pluripotent cells, and to provide insight into how changes in Oct4 function might account for its ability to facilitate cell fate transitions. As a result of our studies we find that Oct4 function is dependent upon post-translational modifications (PTMs). We find through a combination of experimental approaches, including genome-wide microarray analysis, bioinformatics, chromatin immunoprecipitation, functional molecular, and biochemical analyses, that in the pluripotent state Oct4, Akt, and Hmgb2 participate in a regulatory feedback loop. Akt-mediated phosphorylation of Oct4 facilitates interaction with PcG recruiter Hmgb2. Consequently, Hmgb2 functions as a context dependent modulator of Akt and Oct4 function, promoting transcriptional poise at Oct4 bound loci. Sumoylation of Oct4 is then required to maintain Hmgb2 enrichment at repressed loci and to transmit the H3K27me3 mark in daughter progeny. The expression of Oct4 phosphorylation mutants however, leads to Akt inactivation and initiates the DNA Damage Checkpoint response. Our results suggest that this may subsequently facilitate chromatin reorganization and cell fate transitions. In summary, our results suggest that controlled modulation of Oct4, Akt, and Hmgb2 function is required to maintain pluripotency and for the faithful induction of transcriptional programs required for lineage specific differentiation.
18

Activité des cellules souches : identification de nouveaux effecteurs dans le système hématopoïétique

Deneault, Eric 11 1900 (has links)
Les cellules souches somatiques présentent habituellement un comportement très différent des cellules souches pluripotentes. Les bases moléculaires de l’auto-renouvellement des cellules souches embryonnaires ont été récemment déchiffrées grâce à la facilité avec laquelle nous pouvons maintenant les purifier et les maintenir en culture durant de longues périodes de temps. Par contre, il en va tout autrement pour les cellules souches hématopoïétiques. Dans le but d’en apprendre davantage sur le fonctionnement moléculaire de l’auto-renouvellement des cellules souches hématopoïétiques, j’ai d’abord conçu une nouvelle méthode de criblage gain-de-fonction qui répond aux caprices particuliers de ces cellules. Partant d’une liste de plus de 700 facteurs nucléaires et facteurs de division asymétrique candidats, j’ai identifié 24 nouveaux facteurs qui augmentent l’activité des cellules souches hématopoïétiques lorsqu’ils sont surexprimés. J’ai par la suite démontré que neuf de ces facteurs agissent de manière extrinsèque aux cellules souches hématopoïétiques, c’est-à-dire que l’effet provient des cellules nourricières modifiées en co-culture. J’ai également mis à jour un nouveau réseau de régulation de transcription qui implique cinq des facteurs identifiés, c’est-à-dire PRDM16, SPI1, KLF10, FOS et TFEC. Ce réseau ressemble étrangement à celui soutenant l’ostéoclastogénèse. Ces résultats soulèvent l’hypothèse selon laquelle les ostéoclastes pourraient aussi faire partie de la niche fonctionnelle des cellules souches hématopoïétiques dans la moelle osseuse. De plus, j’ai identifié un second réseau de régulation impliquant SOX4, SMARCC1 et plusieurs facteurs identifiés précédemment dans le laboratoire, c’est-à-dire BMI1, MSI2 et KDM5B. D’autre part, plusieurs indices accumulés tendent à démontrer qu’il existe des différences fondamentales entre le fonctionnement des cellules souches hématopoïétiques murines et humaines. / Somatic stem cells usually exhibit a very different behavior compared to pluripotent stem cells. The molecular basis of embryonic stem cell self-renewal was recently decrypted by the relative straightforwardness with which we can now purify and maintain these cells in culture for long periods of time. However, this is not the case with hematopoietic stem cells. In order to elucidate the molecular mechanisms of hematopoietic stem cell self-renewal, I developed a novel gain-of-function screening strategy, which bypasses some constraints found with these cells. Starting from a list of more than 700 candidate nuclear factors and asymmetric division factors, I have identified 24 new factors that increase hematopoietic stem cell activity when overexpressed. I have also found that nine of these factors act extrinsically to hematopoietic stem cells, i.e., the effect comes from the engineered feeder cells in co-culture. Moreover, I have revealed a new transcriptional regulatory network including five of the factors identified, i.e., PRDM16, SPI1, KLF10, FOS and TFEC. This network is particularly similar to that involved in osteoclastogenesis. These results raise the hypothesis that osteoclasts might also be part of the functional hematopoietic stem cell niche in the bone marrow. Furthermore, I have identified a second regulatory network involving SOX4, SMARCC1 and several factors previously identified in the laboratory, i.e., BMI1, MSI2 and KDM5B. Besides, several lines of evidence tend to show that there are fundamental differences between mouse and human hematopoietic stem cells.
19

Identification des réseaux transcriptionnnels de résistance aux antifongiques chez Candida albicans

Znaidi, Sadri 10 1900 (has links)
Plusieurs souches cliniques de Candida albicans résistantes aux médicaments antifongiques azolés surexpriment des gènes encodant des effecteurs de la résistance appartenant à deux classes fonctionnelles : i) des transporteurs expulsant les azoles, CDR1, CDR2 et MDR1 et ii) la cible des azoles 14-lanostérol déméthylase encodée par ERG11. La surexpression de ces gènes est due à la sélection de mutations activatrices dans des facteurs de transcription à doigts de zinc de la famille zinc cluster (Zn2Cys6) qui contrôlent leur expression : Tac1p (Transcriptional activator of CDR genes 1) contrôlant l’expression de CDR1 et CDR2, Mrr1p (Multidrug resistance regulator 1), régulant celle de MDR1 et Upc2p (Uptake control 2), contrôlant celle d’ERG11. Un autre effecteur de la résistance clinique aux azoles est PDR16, encodant une transférase de phospholipides, dont la surexpression accompagne souvent celle de CDR1 et CDR2, suggérant que les trois gènes appartiennent au même régulon, potentiellement celui de Tac1p. De plus, la régulation transcriptionnelle du gène MDR1 ne dépend pas seulement de Mrr1p, mais aussi du facteur de transcription de la famille basic-leucine zipper Cap1p (Candida activator protein 1), un régulateur majeur de la réponse au stress oxydatif chez C. albicans qui, lorsque muté, induit une surexpression constitutive de MDR1 conférant la résistance aux azoles. Ces observations suggèrent qu’un réseau de régulation transcriptionnelle complexe contrôle le processus de résistance aux antifongiques azolés chez C. albicans. L’objectif de mon projet au doctorat était d’identifier les cibles transcriptionnelles directes des facteurs de transcription Tac1p, Upc2p et Cap1p, en me servant d’approches génétiques et de génomique fonctionnelle, afin de i) caractériser leur réseau transcriptionnel et les modules transcriptionnels qui sont sous leur contrôle direct, et ii) d’inférer leurs fonctions biologiques et ainsi mieux comprendre leur rôle dans la résistance aux azoles. Dans un premier volet, j’ai démontré, par des expériences de génétique, que Tac1p contrôle non seulement la surexpression de CDR1 et CDR2 mais aussi celle de PDR16. Mes résultats ont identifié une nouvelle mutation activatrice de Tac1p (N972D) et ont révélé la participation d’un autre régulateur dans le contrôle transcriptionnel de CDR1 et PDR16 dont l’identité est encore inconnue. Une combinaison d’expériences de transcriptomique et d’immunoprécipitation de la chromatine couplée à l’hybridation sur des biopuces à ADN (ChIP-chip) m’a permis d’identifier plusieurs gènes dont l’expression est contrôlée in vivo et directement par Tac1p (PDR16, CDR1, CDR2, ERG2, autres), Upc2p (ERG11, ERG2, MDR1, CDR1, autres) et Cap1p (MDR1, GCY1, GLR1, autres). Ces expériences ont révélé qu’Upc2p ne contrôle pas seulement l’expression d’ERG11, mais aussi celle de MDR1 et CDR1. Plusieurs nouvelles propriétés fonctionnelles de ces régulateurs ont été caractérisées, notamment la liaison in vivo de Tac1p aux promoteurs de ses cibles de façon constitutive et indépendamment de son état d’activation, et la liaison de Cap1p non seulement à la région du promoteur de ses cibles, mais aussi celle couvrant le cadre de lecture ouvert et le terminateur transcriptionnel putatif, suggérant une interaction physique avec la machinerie de la transcription. La caractérisation du réseau transcriptionnel a révélé une interaction fonctionnnelle entre ces différents facteurs, notamment Cap1p et Mrr1p, et a permis d’inférer des fonctions biologiques potentielles pour Tac1p (trafic et la mobilisation des lipides, réponse au stress oxydatif et osmotique) et confirmer ou proposer d’autres fonctions pour Upc2p (métabolisme des stérols) et Cap1p (réponse au stress oxydatif, métabolisme des sources d’azote, transport des phospholipides). Mes études suggèrent que la résistance aux antifongiques azolés chez C. albicans est intimement liée au métabolisme des lipides membranaires et à la réponse au stress oxydatif. / Many azole resistant Candida albicans clinical isolates overexpress genes encoding azole resistance effectors that belong to two functional categories: i) CDR1, CDR2 and MDR1, encoding azole-efflux transporters and ii) ERG11, encoding the target of azoles 14-lanosterol demethylase. The constitutive overexpression of these genes is due to activating mutations in transcription factors of the zinc cluster family (Zn2Cys6) which control their expression. Tac1p (Transcriptional activator of CDR genes 1), controlling the expression of CDR1 and CDR2, Mrr1p (Multidrug resistance regulator 1), regulating MDR1 expression and Upc2p (Uptake control 2), controlling the expression of ERG11. Another determinant of clinical azole resistance is PDR16, encoding a phospholipid transferase, whose overexpression often accompanies that of CDR1 and CDR2 in clinical isolates, suggesting that the three genes belong to the same regulon, potentially that of Tac1p. Further, MDR1 expression is not only regulated by Mrr1p, but also by the basic-leucine zipper transcription factor Cap1p (Candida activator protein 1), which controls the oxidative stress response in C. albicans and whose mutation confers azole resistance via MDR1 overexpression. These observations suggest that a complex transcriptional regulatory network controls azole resistance in C. albicans. My Ph.D. studies are aimed at identifying the direct transcriptional targets of Tac1p, Upc2p and Cap1p using genetics and functional genomics approches in order to i) characterize their regulatory network and the transcriptional modules under their direct control and ii) infer their biological functions and better understand their roles in azole resistance. In the first part of my studies, I showed that Tac1p does not only control the expression of CDR1 and CDR2, but also that of PDR16. My results also identified a new activating mutation in Tac1p (N972D) and revealed that the expression of CDR1 and PDR16 is under the control of another yet unknown regulator. The combination of transcriptomics and genome-wide location (ChIP-chip) approaches allowed me to identify the in vivo direct targets of Tac1p (PDR16, CDR1, CDR2, ERG2, others), Upc2p (ERG11, ERG2, MDR1, CDR1, others) and Cap1p (MDR1, GCY1, GLR1, others). These results also revealed that Upc2p does not only control the expression of ERG11 but also that of MDR1 and CDR1. Many new functional features of these transcription factors were found, including the constitutive binding of Tac1p to its targets under both activating and non-activating conditions, and the binding of Cap1p which extends beyond the promoter region of its target genes, to cover the open reading frame and the putative transcription termination regions, suggesting a physical interaction with the transcriptional machinery. The characterization of the transcriptional regulatory network revealed a functional interaction between these factors, notably between Cap1p and Mrr1p, and inferred potential biological functions for Tac1p (lipid mobilization and traffic, response to oxidative and osmotic stress) and confirmed or suggested other functions for Upc2p (sterol metabolism) and Cap1p (oxidative stress response, regulation of nitrogen utilization and phospholipids transport). Taken together, my results suggest that azole resistance in C. albicans is tightly linked to membrane lipid metabolism and oxidative stress response.
20

Pou5f1 Post-translational Modifications Modulate Gene Expression and Cell Fate

Campbell, Pearl 20 December 2012 (has links)
Embryonic stem cells (ESCs) are characterized by their unlimited capacity for self-renewal and the ability to contribute to every lineage of the developing embryo. The promoters of developmentally regulated loci within these cells are marked by coincident epigenetic modifications of gene activation and repression, termed bivalent domains. Trithorax group (TrxG) and Polycomb Group (PcG) proteins respectively place these epigenetic marks on chromatin and extensively colocalize with Oct4 in ESCs. Although it appears that these cells are poised and ready for differentiation, the switch that permits this transition is critically held in check. The derepression of bivalent domains upon knockdown of Oct4 or PcG underscores their respective roles in maintaining the pluripotent state through epigenetic regulation of chromatin structure. The mechanisms that facilitate the recruitment and retention of Oct4, TrxG, and PcG proteins at developmentally regulated loci to maintain the pluripotent state, however, remain unknown. Oct4 may function as either a transcriptional activator or repressor. Prevailing thought holds that both of these activities are required to maintain the pluripotent state through activation of genes implicated in pluripotency and cell-cycle control with concomitant repression of genes required for differentiation and lineage-specific differentiation. More recent evidence however, suggests that the activator function of Oct4 may play a more critical role in maintaining the pluripotent state (Hammachi et al., 2012). The purpose of the studies described in this dissertation was to clarify the underlying mechanisms by which Oct4 functions in transcriptional activation and repression. By so doing, we wished to contextualize its role in pluripotent cells, and to provide insight into how changes in Oct4 function might account for its ability to facilitate cell fate transitions. As a result of our studies we find that Oct4 function is dependent upon post-translational modifications (PTMs). We find through a combination of experimental approaches, including genome-wide microarray analysis, bioinformatics, chromatin immunoprecipitation, functional molecular, and biochemical analyses, that in the pluripotent state Oct4, Akt, and Hmgb2 participate in a regulatory feedback loop. Akt-mediated phosphorylation of Oct4 facilitates interaction with PcG recruiter Hmgb2. Consequently, Hmgb2 functions as a context dependent modulator of Akt and Oct4 function, promoting transcriptional poise at Oct4 bound loci. Sumoylation of Oct4 is then required to maintain Hmgb2 enrichment at repressed loci and to transmit the H3K27me3 mark in daughter progeny. The expression of Oct4 phosphorylation mutants however, leads to Akt inactivation and initiates the DNA Damage Checkpoint response. Our results suggest that this may subsequently facilitate chromatin reorganization and cell fate transitions. In summary, our results suggest that controlled modulation of Oct4, Akt, and Hmgb2 function is required to maintain pluripotency and for the faithful induction of transcriptional programs required for lineage specific differentiation.

Page generated in 0.1413 seconds