Spelling suggestions: "subject:"cellule souches hématopoïétiques"" "subject:"céllule souches hématopoïétiques""
1 |
Implication de la biogenèse des ribosomes dans la régulation des cellules souches : étude du gène Notchless dans l'homéostasie des cellules souches hématopoïétiques chez la souris adulteLe Bouteiller, Marie 26 September 2012 (has links) (PDF)
De nombreux facteurs régulant la fonction des Cellules Souches Hématopoïétiques (CSH) ont été identifiés ces dernières années grâce à des modèles murins. Au cours de ma thèse, j'ai montré que le gène Notchless (Nle) était nécessaire au maintien des CSH adultes. L'inactivation ubiquitaire de Nle chez la souris adulte provoque la mort des souris en une douzaine de jours, précédée d'une disparition rapide des CSH et des progéniteurs multipotents. Suite à la délétion de Nle, les CSH entrent en cycle indiquant que Nle pourrait être important pour le maintien de la quiescence des CSH. Aucune augmentation de l'apoptose n'a été détectée. Différentes approches de greffes ont montré que Nle était requis dans les CSH de façon autonome cellulaire. L'ensemble de ces données a permis de conclure que Nle est un régulateur critique du maintien des CSH, à l'homéostasie et en situation de stress. Par ailleurs, des approches in vivo et ex vivo suggèrent que Nle n'est pas requis pour le développement et la survie des cellules B et des progéniteurs myéloïdes. Des données récentes ont montré que l'orthologue de Nle chez la levure était impliqué dans la biogenèse des ribosomes. En utilisant des cellules ES murines, j'ai montré que ce rôle était conservé chez la souris. Par une approche combinée de marquages des cellules hématopoïétiques et de FISH sur les ARNr, j'ai montré que la délétion de Nle affectait la biogenèse des ribosomes dans les CSH et les progéniteurs immatures, mais pas dans le lignage B. Dans son ensemble, mon travail de thèse suggère que la synthèse des ribosomes pourrait être spécifiquement régulée en fonction du type cellulaire, et en particulier dans les cellules souches
|
2 |
Caractérisation des populations enrichies en cellules souches hématopoïétiques dans le placenta et le sac vitellin au cours du développement embryonnaireNaguet De Saint-Vulfran, Noémie 27 September 2012 (has links) (PDF)
Chez la souris, peu de choses sont connues sur les marqueurs de surface qui caractérisent les cellules souches hématopoïétiques (CSHs) embryonnaires. Durant ma thèse, j'ai étudié au niveau du placenta (Pl) et du sac vitellin (SV) les populations CD34+c-kithi, CD144+CD45+ et Sca-1+AA4.1+, déjà décrites comme enrichies en CSHs dans d'autres contextes. Le projet dans son ensemble a permis de montrer que l'enrichissement en CSHs n'implique pas les mêmes marqueurs selon le tissu considéré : dans les sites d'émergence (AGM) et d'émergence/amplification des CSHs (SV), la population la plus enrichie en CSHs a pour phénotype CD144+CD45+ ; concernant le Pl, organe d'amplification des CSHs, elle a pour phénotype CD34+c-kithiSca-1+ alors que dans le foie fœtal (FF), organe d'amplification/différenciation des CSHs, elle a pour phénotype CD34+c-kithiSca-1+AA4.1+. L'analyse moléculaire de ces populations permettra de révéler des molécules régulatrices spécifiques de l'émergence et de l'amplification des CSHs. Par ailleurs, nous avons utilisé les souris transgéniques VECR pour étudier l'origine des CSHs CD34+c-kithi du Pl et il semblerait qu'à E11.5, toutes ne proviennent pas de l'endothélium. Les résultats préliminaires réalisés sur les souris Mpl-/-, qui présentent un défaut de contenu en CSHs dans le Pl et le FF, indiquent qu'à E11.5, le potentiel hématopoïétique de la population CD34+c-kithi du Pl Mpl-/- est inférieur à celui de la population CD34+ckithi du Pl C57Bl6 ; cette différence n'est plus visible à E12.5. Le Pl constitue donc une niche transitoire d'amplification/maturation des CSHs mais il est possible qu'il puisse également produire des CSHs
|
3 |
Unraveling variations in ribosome biogenesis activity in the mouse hematopoietic system at homeostasis in vivo / Mise en évidence de variations de l'activité de biogenèse des ribosomes dans le lignage hématopoïétique murin in vivo à l'homéostasieJarzebowski, Léonard 11 October 2016 (has links)
Les cellules souches (CS) se démarquent des progéniteurs et cellules différenciées à de nombreux égards. Notamment, les CS présentent des caractéristiques particulières dans des processus cellulaires fondamentaux, et il a été récemment proposé que la biogenèse des ribosomes (BiRi) participe à la régulation des CS. Pendant ma thèse, j’ai utilisé diverses approches pour étudier le rôle et la régulation de la BiRi dans des populations de CS, in vivo et ex vivo dans des modèles murins.Grâce à un modèle d’inactivation génétique du facteur de BiRi Notchless (Nle), j’ai participé à l’étude de son rôle dans le lignage hématopoïétique et l’épithélium intestinal adultes, et cours du développement embryonnaire précoce. In vivo, la perte constitutive de Nle entraîne une létalité embryonnaire, et j’ai montré ex vivo que l’inactivation de Nle dans des CS embryonnaires induit une réponse au stress ribosomique médiée par le suppresseur de tumeur p53, et des défauts de prolifération/survie. L’induction de la perte de Nle chez l’adulte active également p53 dans les CS hématopoïétiques et intestinale, entraînant leur rapide élimination.En parallèle, j’ai utilisé plusieurs méthodes pour mesurer l’activité de BiRi des progéniteurs immatures et CS hématopoïétiques (CSH) à l’homéostasie, in vivo chez la souris adulte. J’ai ainsi mis en évidence des variations de l’activité de BiRi dans ces populations, révélant notamment une activité de BiRi des CSH jusqu’ici insoupçonnée du fait de leur quiescence.Dans l’ensemble, mon travail renforce l’idée d’un rôle de la BiRi dans la régulation des CS, et apporte une meilleure compréhension de la régulation de ce processus dans le lignage hématopoïétique. / Stem cells (SCs) differ from progenitors and differentiated cells on many aspects. Notably, SCs display particular characteristics in fundamental cellular processes, and ribosome biogenesis (RiBi) has recently been proposed to play an important role in the regulation of SCs. During my thesis, I have used various approaches to study the role and regulation of RiBi in SC populations, using in vivo and ex vivo mouse models.Using genetic inactivation of the RiBi factor Notchless (Nle), I have participated to the analysis of its role in the adult hematopoietic system and intestinal epithelium, and in the establishment of the first cell lineages during early embryogenesis. In vivo, constitutive Nle deficiency causes early embryonic lethality, and I showed ex vivo that Nle inactivation in embryonic SCs induces a ribosomal stress response mediated by the tumor suppressor p53, and proliferation/survival defects. Conditional Nle inactivation in the adult mouse also induces activation of p53 in hematopoietic and intestinal SCs in vivo, leading to their rapid elimination.In parallel, I have used different methods to analyze the RiBi activity of hematopoietic SCs (HSCs) and immature progenitors at homeostasis, in vivo in the adult mouse. Thus, I have unraveled variations in the RiBi activity of these populations, and notably uncovered previously unsuspected RiBi activity in HSCs despite their quiescent state.Altogether, my work supports the hypothesis of a role for RiBi in the regulation of SCs and provides better understanding of the activity of this process during hematopoietic differentiation.
|
4 |
Le système rénine-angiotensine (SRA) dans l'émergence hématopoïétique au cours de l'ontogenèse / The Renin-Angiotensin System (RAS) in hematopoietic emergence during ontogenyBiasch, Katia 11 July 2012 (has links)
Nous avons montré que l'enzyme de conversion de l'angiotensine (ACE) est un nouveau marqueur de la cellule souche hématopoïétique et identifie l’émergence de l'hématopoïèse dans tous les sites hématogènes de l’embryon humain. L'ACE fait partie du système rénine-angiotensine (SRA) dont la fonction principale est d'agir sur l'angiotensine I pour former l'angiotensine II (AngII), un puissant vasoconstricteur.De plus, nous montrons que les principaux composants du SRA (les récepteurs AT1 et AT2, l’angiotensinogène et la rénine) sont exprimés dans la même région de l'embryon qui exprime l'ACE, suggérant ainsi l’existence d’un SRA local dans l'embryon précoce. Des tests fonctionnels, conduits in vitro chez l'embryon de la souris, montrent que l’Ang II stimule dans la culture l'émergence des progéniteurs hématopoïétiques, effet qui peut être bloqué par un antagoniste spécifique de l’AT1. Ces observations suggèrent pour la première fois, le rôle direct du SRA dans l’émergence hématopoïétique au cours de l’ontogenèse. De plus, nous mettons en évidence l'existence d'un SRA local dans la moelle osseuse (MO) adulte et nous montrons que les principaux éléments de ce système sont surexprimés dans la MO de patients atteints de leucémie aiguë myéloïde, aussi bien dans les blastes que dans les cellules stromales. Ces observations suggèrent une contribution du SRA à la dérégulation de la niche observée dans les hémopathies.Ainsi, la présence d’un SRA local dans la niche hématopoïétique intra-embryonnaire et dans la MO chez l’adulte place ce système dans une position stratégique comme acteur important de l’émergence et de la régulation du système sanguin définitif. / We have shown that the angiotensin-converting enzyme (ACE) is a new marker of human hematopoietic stem cells and also identifies emerging hematopoiesis in all hemogenic sites inside the human embryo. ACE is a key component of renin-angiotensin system (RAS) as it catalyses the production of angiotensin II (Ang II) well known for its effect in the control of blood pressure, through AT1 and AT2 receptors.Furthermore, we observe the presence of the main elements of the RAS (AT1, AT2 receptors, angiotensinogen and renin) in the same region of the embryo expressing ACE, meaning that a local RAS exists in the embryo. Functional in vitro analyses, carried out in mouse model, show a stimulatory effect of AngII in the hematopoietic precursors emergence, an effect inhibited by a specific AT1 antagonist. These observations suggest for the first time a direct role of RAS in the emergence of hematopoiesis during ontogeny. In addition, our data indicate the presence of a local RAS inside the adult bone marrow (BM). This system is overexpressed in the BM of acute myeloid leukemia (AML) patients, both in hematopoietic cells and in stromal cells suggesting a RAS contribution to the bone marrow niche deregulation, always observed in these hemopathies.Therefore, the existence of a local RAS in the intraembryonic niche and in the adult bone marrow suggests that this system is an important actor in the emergence and regulation of the definitive blood system.
|
5 |
Rôle des gènes HOX du paralogue 4 dans l'autorenouvellement des cellules souches et progéniteurs hématopoïétiquesFournier, Marilaine 08 1900 (has links)
La transplantation de cellules souches hématopoïétiques (CSH) est un traitement couramment utilisé pour traiter plusieurs types de maladies hématologiques telles que les leucémies. Par contre, une limite importante de ce type de traitement est la quantité restreinte de CSH disponibles pour la transplantation. Il importe donc de trouver des moyens pour expandre efficacement ces cellules ex vivo tout en préservant leurs propriétés. Le gène HOXB4 est présentement un candidat très prometteur pour atteindre cet objectif. Il a en effet été montré que HOXB4 est capable d’expandre les CSH in vivo et in vitro sans mener au développement de leucémie. Le gène HOXC4, qui appartient au même paralogue est aussi en mesure d’expandre les cellules hématopoïétiques primitives suggérant un rôle commun pour les gènes HOX du paralogue 4 dans l’autorenouvellement des CSH.
Le gène HOXA4 est dix fois plus exprimé que le gène HOXB4 dans des CSH du foie fœtal au moment de leur principale expansion. De plus, les CSH mutantes pour Hoxa4, contrairement aux CSH mutantes pour Hoxb4, sont incapables de reconstituer un receveur irradié lorsqu’elles sont transplantées en condition de compétition. HOXA4 pourrait donc jouer un rôle plus important que les autres gènes du paralogue 4 pour l’expansion des CSH au niveau physiologique. Nous avons donc posé l’hypothèse que HOXA4 est capable d’expandre des CSH de façon plus importante que HOXB4.
Les résultats obtenues dans le cadre de ce projet de recherche ont montré que la surexpression de HOXA4 était capable d’expandre les CSH et les progéniteurs hématopoïétiques primitifs dans le même ordre que ce qui est connu pour HOXB4. Des cultures et des essais de transplantation en situation de compétition ont confirmé la capacité égale des CSH surexprimant HOXA4 et HOXB4 de proliférer et de reconstituer les receveurs irradiés à long terme. Par contre, nous avons observé une meilleure reconstitution périphérique à court terme par les CSH HOXA4+ par rapport aux CSH HOXB4+, associée à une meilleure reconstitution lymphoïde. Nous avons aussi comparé les niveaux d’expression de gènes cibles potentiels dans des CSH surexprimant HOXA4 ou HOXB4 et observer que plusieurs gènes importants pour la fonction des CSH était régulé positivement suite à leur surexpression, notamment plusieurs gènes impliqués dans les voies de signalisation Notch et Wnt, tels que des récepteurs et ligands. Les gènes HOX du paralogue 4 pourraient donc réguler la communication entre les CSH et leur microenvironnement via ces voies de signalisation majeures et ainsi réguler leur autorenouvellement. La modulation de différents gènes codant pour des facteurs de transcription et des molécules impliquées dans la pluripotence suggère également que HOXA4 et HOXB4 utilisent des mécanismes intrinsèques et extrinsèques pour réguler leur potentiel d’autorenouvellement.
Ces connaissances pourront ainsi être utilisées pour optimiser les protocoles d’expansion ex vivo des CSH dans un but thérapeutique. / Transplantation of hematopoietic stem cells (HSC) is a treatment commonly used to treat several types of hematological diseases such as leukemia. However, a major limitation of this type of treatment is the limited number of HSC available for transplantation. It is therefore important to develop ways to expand these cells ex vivo. The HOXB4 gene is a promising candidate for achieving this goal. It has indeed been shown that HOXB4 is able to expand HSC in vivo and in vitro without inducing leukemia. HOXC4, which belongs to the same paralog group, is also able to expand primitive hematopoietic cell suggesting a common role for paralog 4 HOX genes in the self-renewal of HSC.
HOXA4 is ten times more expressed in fetal liver HSC during their primary expansion. Furthermore, Hoxa4 mutant HSC, unlike Hoxb4 mutant HSC, are unable to reconstitute an irradiated recipient when transplanted in competition. Therefore, HOXA4 could play a more important role than other paralog 4 genes for HSC expansion at the physiological level and we hypothesized that HOXA4 can expand HSC more efficiently than HOXB4.
The results obtained during this research project showed that the overexpression of HOXA4 expand HSC and primitive hematopoietic progenitors in the same order as HOXB4. Direct competitive culture and transplantation assays confirmed the equal capacity of HSC overexpressing HOXA4 and HOXB4 to proliferate and engraft at long-term. However, we observed a better short-term peripheral reconstitution by HOXA4+ HSC compared to HOXB4+ HSC, which was associated with a better lymphoid reconstitution. We also compared the expression levels of potential target genes in HSC overexpressing HOXA4 or HOXB4 and observed that many genes important for HSC function were upregulated following their overexpression, including several genes involved in the Notch and Wnt signaling pathway. These included both receptors as well as ligands, indicating that HOX4 genes might regulate the communication of primitive HSCs with their environment through these major signaling pathways and promote self-renewal. In addition, modulation of genes coding for transcription factors and molecules known for their function in pluripotency suggest that HOXA4 and HOXB4 have both intrinsic and extrinsic potential to control self renewal potential.
This knowledge can then be further explored and used to optimize ex vivo HSC expansion protocols for clinical purposes.
|
6 |
Rôle de la signalisation TPO dans la réparation de l'ADN des cellules souches hématopoïétiquesDe Lacoste de Laval, Bérengère 10 September 2013 (has links) (PDF)
A l'origine de l'hématopoïèse se trouve les cellules souches hématopoïétiques (CSH). Elles constituent un pool de cellules rares présentes dans la moelle osseuse aux niveaux de zones particulières de l'os appelées niche. Les cellules de la niche produisent des cytokines, telles que la thrombopoïétine (TPO), qui régulent les CSH en contrôlant leur quiescence et leur auto-renouvellement. Peu de choses sont connues sur les mécanismes mis en place par la CSH et son environnement pour faire face aux dommages de l'ADN, notamment induits lors de radio- ou chimio-thérapies. Durant cette étude, nous avons mis en évidence un nouveau rôle de la TPO et de son récepteur Mpl dans la réparation de l'ADN des CSH en réponse à des stress génotoxiques. Les CSH déficientes ou haplo-insuffisantes pour Mpl, ou les CSH sauvages et cultivées en absence de TPO, présentent un défaut de réparation et une instabilité génomique. En réponse à l'irradiation, la TPO potentialise l'activation de la voie NF-kB qui permet l'induction du gène précoce Iex-1. La TPO est également l'activateur majeur de la voie ERK dans les CSH. IEX-1 et pERK forment un complexe tripartite avec DNA-PK, une protéine clé de la voie Non Homologous End Joining (NHEJ). La DNA-PK est fortement activée par la TPO, ce qui augmente la fidélité et l'efficacité de la voie NHEJ et permet d'améliorer l'intégrité génomique des CSH. Par ailleurs, nous montrons qu'une simple injection de TPO ou de son agoniste Romiplostim, avant irradiation ou injection de doxorubicine, limite la mutagénèse des CSH et leur perte de fonction associée. Cet effet est spécifique de la TPO, d'autres cytokines comme le SCF et le Flt3-L, n'ont aucun effet sur la réparation. Ces résultats montrent que la TPO contrôle directement les voies de signalisation aboutissant à la réparation de l'ADN des CSH. Ils ouvrent des perspectives nouvelles pour l'utilisation des agonistes de la TPO comme adjuvant protecteur avant radio- ou chimiothérapie pour minimiser les risques de développement de leucémies aigües myéloïdes secondaires. L'expression de Mpl étant haploinsuffisante pour la fonction de réparation de l'ADN, ces résultats suggèrent que Mpl pourrait être tumeur suppresseur en réponse aux traitements chimio-ou radio-thérapeutiques.
|
7 |
Rôle de la signalisation TPO dans la réparation de l’ADN des cellules souches hématopoïétiques / Role of TPO signaling in DNA repair of hematopoietic stem cellsLacoste de Laval, Bérengère de 10 September 2013 (has links)
A l’origine de l’hématopoïèse se trouve les cellules souches hématopoïétiques (CSH). Elles constituent un pool de cellules rares présentes dans la moelle osseuse aux niveaux de zones particulières de l’os appelées niche. Les cellules de la niche produisent des cytokines, telles que la thrombopoïétine (TPO), qui régulent les CSH en contrôlant leur quiescence et leur auto-renouvellement. Peu de choses sont connues sur les mécanismes mis en place par la CSH et son environnement pour faire face aux dommages de l’ADN, notamment induits lors de radio- ou chimio-thérapies. Durant cette étude, nous avons mis en évidence un nouveau rôle de la TPO et de son récepteur Mpl dans la réparation de l’ADN des CSH en réponse à des stress génotoxiques. Les CSH déficientes ou haplo-insuffisantes pour Mpl, ou les CSH sauvages et cultivées en absence de TPO, présentent un défaut de réparation et une instabilité génomique. En réponse à l’irradiation, la TPO potentialise l’activation de la voie NF-kB qui permet l’induction du gène précoce Iex-1. La TPO est également l’activateur majeur de la voie ERK dans les CSH. IEX-1 et pERK forment un complexe tripartite avec DNA-PK, une protéine clé de la voie Non Homologous End Joining (NHEJ). La DNA-PK est fortement activée par la TPO, ce qui augmente la fidélité et l’efficacité de la voie NHEJ et permet d’améliorer l’intégrité génomique des CSH. Par ailleurs, nous montrons qu’une simple injection de TPO ou de son agoniste Romiplostim, avant irradiation ou injection de doxorubicine, limite la mutagénèse des CSH et leur perte de fonction associée. Cet effet est spécifique de la TPO, d’autres cytokines comme le SCF et le Flt3-L, n’ont aucun effet sur la réparation. Ces résultats montrent que la TPO contrôle directement les voies de signalisation aboutissant à la réparation de l’ADN des CSH. Ils ouvrent des perspectives nouvelles pour l’utilisation des agonistes de la TPO comme adjuvant protecteur avant radio- ou chimiothérapie pour minimiser les risques de développement de leucémies aigües myéloïdes secondaires. L’expression de Mpl étant haploinsuffisante pour la fonction de réparation de l’ADN, ces résultats suggèrent que Mpl pourrait être tumeur suppresseur en réponse aux traitements chimio-ou radio-thérapeutiques. / Hematopoietic stem cells (HSC) are at the beginning of hematopoeisis. They constitute a pool of rare cells in bone marrow in specifics zones of bones called niche. Niche’s cells produce cytokines, like thrombopoietin (TPO). These cytokines regulates HSC by controlling quiescence and self-renewal. Few are known about mechanism used by HSC and its environment to prevent DNA damage, and especially those induced by radio- or chemo-therapies. In this study, we discover a new role of TPO and its receptor Mpl in DNA repair of HSC in response to genotoxic stress. HSC without Mpl, or wild type HSC cultured without TPO, show an important defect of DNA repair and genomic instability. In response to irradiation, TPO increases activation of NF-KB pathway that increases induction of IEX-1 early gene. TPO is also the major activator of ERK pathway in HSC. IEX-1 and p-ERK can form a tripartite complex with DNA-PK, a key protein of Non homologous end joining pathway (NHEJ). DNA-PK is fully activated by TPO which increase fidelity and efficacy of NHEJ pathway leading to better genomic integrity of HSC. We also show in this study that a simple injection of TPO or Romiplostim before irradiation or Doxorubicin injection, decrease mutagenesis of HSC and their loss of function associated. This effect of TPO is specific of TPO because other cytokines like SCF or Flt3-L have no effect on the DNA repair. These results show that TPO can directly control signaling pathway leading to repair of HSC’s DNA and open new avenues for TPO agonist using. They can be used to protect HSC before radio- or chemo-therapies and to minimize development of secondary acute myeloid leukemia. Expression of Mpl being haplo-insufficient for DNA repair functions, this result suggests that Mpl could be a tumor suppressor in response to radio- or chemo-therapies treatments.
|
8 |
Expression et fonction des gènes du groupe Polycomb (PcG) dans l'hématopoïèse normale et leucémiqueLessard, Julie January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
9 |
Role of thrombopoietin in DNA repair an genomic integrity in hematopoietic stem cells / Rôle de la thrombopoïétine dans la réparation de l’ADN et l’intégrité génomique des cellules souches hématopoïétiqueBarbieri, Daniela 12 January 2017 (has links)
Le maintien de l'intégrité génomique est crucial pour la préservation du potentiel des cellules souches hématopoïétiques (CSH). Les lésions de l'ADN dans les CSH sont associées à une capacité réduite à reconstituer l'hématopoïèse, à altérer le potentiel de différentiation et à accroître le risque de développer des tumeurs myéloïdes. Les éléments rétrotransposables (ER), se propageant dans le génome à travers un ARN intermédiaire, ont été associés à la perte d'auto-renouvellement, au vieillissement et aux dommages à l'ADN. Cependant, leur rôle dans les CSH n'avait pas été abordé. Dans cette étude, nous avons constaté que les CSH expriment des niveaux élevés d'ARNm de plusieurs ER comprenant des rétrovirus endogènes (ERV) et des L1 (LINE-1: Long Interspersed Nuclear Elements 1). Leur expression augmente avec l'irradiation. En utilisant des souris transgéniques L1-EGFP, on a montré que la rétrotransposition de L1 se produit dans les CSH in vivo. En outre, les inhibiteurs de la transcriptase inverse Efavirenz et ddC sauve à la fois les CSH des dommages persistants à l'ADN induit par l’irradiation et de la perte de prolifération in vitro. Ceci démontre que la rétrotransposition endogène joue un rôle important dans l'instabilité génomique de CSH induite par l’irradiation et dans leur perte de fonction. Nous avons précédemment montré que la thrombopoïétine (TPO), un facteur d'auto-renouvellement critique pour le CSH, limite les lésions de l'ADN induites par l’irradiation en améliorant la réparation de l'ADN. Nous avons découvert que le traitement par TPO empêche également l'expression et la mobilisation d’ER induite par l’irradiation. Nous avons aussi constaté que l’expression et la retrotransposition de L1 augmente dans les CSH provenant de souirs Mpl-/- et L1-EGFPxMpl-/-. Cela montre que la signalisation TPO in vivo est nécessaire pour restreindre l’expression et la retrotransposition d’ER dans les CSH au niveau basal et dans des conditions de stress. L'analyse transcriptomique a révélé que la TPO induit une réponse d'expression génique antivirale d'interféron (IFN) de type I dans les CSH. En utilisant des souris déficientes en STAT1/STAT2, nous démontrons que cette réponse est dépendante à la fois de STAT1 et de STAT2 et est requise pour l'inhibition de l'expression d’ER. En conclusion, cette étude montre que les ER représentent une importante source d’instabilité génomique dans les CSH. Les CSH sont capables de monter une réponse antivirale en réponse à la TPO comme un nouveau mécanisme pour limiter les dommages à l'ADN. Bien que la sécrétion constitutive d'IFN-I se produise chez des souris saines, les IFN sont produits abondamment principalement pendant les infections. Ainsi, la réponse d'expression de gène d'IFN induite par la TPO peut représenter un signal constitutif important et CSH-dédié; permettant à ces cellules de résister aux lésions de l'ADN induites par ER, tout en préservant leur capacité d'auto-renouvellement. / Maintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. DNA damage in HSCs is associated with reduced ability to reconstitute hematopoiesis, altered lineage potential and accrued risk of developing myeloid malignancies. Retrotransposable elements (RE), spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging and DNA damage. However, their role in HSCs has not been addressed. In this study, we found that HSCs express high mRNA levels of several REs, including evolutionary recent long interspersed element-1 (L1) and endogenous retroviruses (ERV). Their expression further increases upon total body irradiation (TBI). Using L1EGFP transgenic reporter mice, we show that productive L1 retransposition occurs in HSCs in vivo. Furthermore, the reverse transcriptase inhibitors Efavirenz and ddC rescue TBI-induced both persistent DNA damage and HSC loss of proliferation in vitro. This demonstrates that endogenous retrotransposition plays an important role in TBI-induced HSC genomic instability and their loss of function. We have previously shown that thrombopoietin (TPO), a critical HSC self-renewal factor limits TBI-induced HSC DNA damage by improving DNA repair. We found that TPO treatment also prevents TBI-induced RE expression and mobilization. In addition, L1 expression and retrotransposition are increased in Mpl-/- and L1-EGFPxMpl-/- HSCs, showing that TPO signaling in vivo is required to restrain RE in HSCs, under both steady state and stress conditions. Transcriptomic analysis revealed that TPO induces an anti-viral, interferon (IFN) type-I like, gene expression response in HSCs. Using STAT1/STAT2-deficient mice, we demonstrate that this response is dependent on both STAT1 and STAT2 and is required for TPO-mediated RE expression inhibition in HSCs. Overall, this study shows that REs represent an important HSC intrinsic source of genomic instability and uncovers the ability of HSCs to mount an anti-viral innate immune state in response to TPO as a novel mechanism to minimize DNA damage. Although constitutive IFN-I secretion occurs in healthy mice, IFNs are produced abundantly mainly during infections. Thus, TPO-induced IFN gene expression response may represent an important constitutive, and HSC-dedicated, signal allowing HSCs to resist RE-induced DNA damage while preserving their self-renewal ability.
|
10 |
Rôle de la niche mésenchymateuse dans la régulation du phénotype SP des progéniteurs hématopoïétiques humainsMalfuson, Jean-Valère 05 June 2013 (has links) (PDF)
L'hématopoïèse est un processus finement régulé pour permettre sa pérennité et son adaptation aux contraintes physiologiques et pathologiques. Ce potentiel repose en grande partie sur les capacités de quiescence, auto-renouvellement, division asymétrique et multipotence des cellules souches hématopoïétiques (CSH). Les CSH et progéniteurs hématopoïétiques (CSPH) sont principalement régulés de façon extrinsèque au sein des niches hématopoïétiques médullaires et cette régulation fait intervenir, des contacts intercellulaires et des facteurs diffusibles. Le phénotype " side-population " (SP), secondaire à l'efflux actif d'un colorant fluorescent (Hoechst 33342) par des pompes de type multidrugresistance, est une caractéristique des cellules souches de la plupart des tissus. Au sein de l'hématopoïèse, le phénotype SP est un excellent moyen pour identifier les CSH murines et est associé à leur quiescence et à leur adhésion à la niche endostéale, mais sa valeur comme marqueur des CSH est plus discutée chez l'homme. Les cellules SP, de par leur nature, sont également étudiées en oncologie, et sont associées aux cellules tumorales les plus résistantes et les plus tumorogènes. La compréhension des mécanismes régulant la fonctionnalité SP devrait permettre d'ouvrir des pistes en physiologie quand à la compréhension de la régulation des CSPH par les niches mésenchymateuses et en pathologie pour cibler les mécanismes de chimiorésistance.Dans ce travail nous montrons pour la première fois chez l'homme que l'acquisition du phénotype SP est un phénomène dynamique et versatile sous le contrôle du stroma médullaire. Le stroma médullaire est en effet capable de maintenir le phénotype SP de CSPH médullaires et d'induire le phénotype SP de CSPH circulants. L'acquisition du phénotype SP par les cellules circulantes nécessite à la fois un " nichage " au sein du stroma et des facteurs diffusibles. Les cellules circulantes capables d'acquérir le phénotype SP contiennent des CSPH au regard de (i) leur expression du CD34, (ii) leur richesse en cellules quiescentes, (iii) leur capacité clonogénique et proliférative en cultures secondaires, (iv) leur expression des gènes de " nichage " et de " souchitude ", (v) leur capacité de migration en réponse à un gradient de CXCL12, (vi) leur activité LT-SRC in vivo. De plus nous avons mis en évidence, au sein de ces CSPH SP+CD34+ révélés par le stroma médullaire, une sous-population CD44-/faible qui pourrait contenir les cellules plus immatures en raison de sa quiescence et de l'intensité de son efflux du Hoechst 33342. Les études mécanistiques montrent que l'acquisition du phénotype SP par les cellules circulantes est sous la dépendance de l'intégrine VLA-4 et du CD44. La transduction du signal implique des protéines G et la famille des Src-kinases. Nous montrons également que le stroma médullaire peut induire/maintenir/amplifier la fonctionnalité SP de blastes circulants de leucémie aigüe myéloblastique de façon ß1-intégrine dépendante et que cette fonctionnalité est associée à une capacité d'efflux de Mitoxantrone. Ce mécanisme de modulation de l'activité d'ABC-transporteurs par l'adhésion au stroma correspond à un mécanisme encore jamais décrit de CAM-DR.
|
Page generated in 0.1446 seconds