31 |
The integration of sensory control for sugar cane harvestersMcCarthy, Stuart George January 2003 (has links)
The research concerns the design and implementation of mechatronic systems to assist in the operation and control of a sugar cane harvester. Two functions were chosen for attention, the primary separation system, and the ‘topper’ that discards the leafy crown. Although these operations are given low priority by the operator of the harvester, their optimisation is of particular significance to the industry. Optimum separation requires a fine balance between discarding ‘trash’ that would contaminate the quality of the cane billets and losing good sugar-bearing material through over cleaning. Poor control of the topper can create extra load for the separation system and cause it to operate at a low efficiency with high loss. Alternatively it can cause a length of sugar-bearing cane stalk to be lost before it even enters the harvester system at all. A variety of mechatronic techniques were explored, that addressed the problem of providing useful data directly from the harvester functions and the electronic instrumentation to allow the data to be collected in a useful form in real-time. Computer control issues were also investigated, to make best use of the data stream. Novel acoustic transducers were introduced to the sensory separation system to provide a signal that indicated material striking the fan blades. A rotary transformer was required to allow transmission of the signal, and a signal interface system was implemented to record the returned data. Many real-time time-series analyses were conducted, and from these a suitable algorithm to extract an impact signal was developed. This system was assessed under harvesting conditions with results that confirmed its ability to quantify the amount of cane lost from the harvest. An investigation was conducted to detect the optimum topping height on a sugar cane stalk. The techniques considered both the internal and external attributes of the stalk, and a method was selected to measure the sugar concentration with a chemical sensor. An important design parameter was that the sensor must operate on the harvester in real time. The novel refractometer worked well in laboratory conditions, yielding repeatable and accurate results. The field environment complicated the application of this system, however this was partly overcome with introduction of a custom sample-crushing mechanism. This device provided the necessary juice sample from a selection of the topped cane stalks. The complete sampling and measuring mechanism operated well on cane stalks, and returned encouraging results. Both sets of data returned useful information regarding the operation of the particular harvester operations. The control of either the separation system or the topper requires careful balancing, and novel control techniques that consider the ergonomics for the operator are discussed. These include visual indication devices through to automatic control algorithms. With the integration of mechatronic techniques into the functioning of the sugar cane harvester, the overall efficiency of many of its functions may be improved, and the operator’s task may be greatly simplified. The ultimate objective is to maximise the yield with an improved level of harvested and separated cane.
|
32 |
Investigation of ZnO Thin Films Deposited on Stainless Steel Substrates for Piezoelectric Transducers ApplicationHuang, Yu-Chang 13 August 2010 (has links)
This study presents a high-performance ZnO piezoelectric transducer integrated with the flexible stainless steel substrate. The ZnO piezoelectric film of 1.08nm was deposited on the flexible stainless steel substrate using a RF magnetron sputtering system. The cantilever length of 1cm and the vibration area of 1cm2 were designed for low-frequency environment according to the Cantilever Vibration Theory. The effects of various sputtering parameters such as substrate temperature, RF power and sputtering pressure were investigated to improve the piezoelectric characteristics of ZnO thin films. It was also discussed the unit thickness of open voltage values, and then the optimal sputtering parameters were determined. The physical characteristics of ZnO thin films were obtained by the analyses of the scanning electron microscopy (SEM) and X-ray diffraction (XRD) to discuss the surfaces, cross section and crystallization of ZnO thin films. The voltage analysis were measured the open and load voltage by the measurement system. The optimal deposition parameters for ZnO thin films are substrate temperature of 300¢J, RF power of 75W, sputtering pressure of 9 mTorr and oxygen concentration of 60%, which were determined by physical characteristics and voltage analysis.
The study employs a precise mass loading of 0.57g on the cantilever to increase the vibration amplitude. The vibration source from 1~150Hz was provided to the piezoelectric transducer, and then the experimental results were showed resonance frequency of 75Hz by oscilloscope. When the optimal thickness of ZnO films is 1.08£gm and vibration amplitude is 1.19mm, the open circuit voltage of the power generator is 5.25V.After rectifying and flitting with a capacitor of 33nF,the maximum power of 1.0£gW/cm2 was achieved with the load resistance of 5M£[.
|
33 |
Implementation of a DSP-Based Hybrid Sensor for Switched Reluctance Motor ConverterChien, Huang-Chen 14 February 2008 (has links)
The Switched Reluctance Motor (SRM) inherits a simple and reliable structure with an economical manufacturing cost. The DC power output supplies the unipolar converter to control the pulses sent to SRM. Thus, the velocity and torque are controllable for various velocity commands, and the SRM is gaining more and more applications on high torque requirement field with constant power.
This paper proposes a DSP based hybrid sensor for switched reluctance motor with easy implementation. The current transducer is used to monitor the energized current and proximity sensors for rotor salient. The signals are then fed back to DSP. This design will improve the performance of SRM to operate more smoothly.
|
34 |
Methodology for the design of hydrophone acoustic baffles and supporting materialsEmbleton, Steven Thomas 05 October 2011 (has links)
One key element of underwater transducer design is the acoustic baffle. Acoustic baffles isolate a structure, such as a submarine hull, from noise and vibration produced by the active elements of the transducer and vice versa. Baffle materials must meet many conflicting requirements such as the need to be lightweight while providing high acoustic isolation. Currently Syntactic Acoustic Damping Material (SADM) is widely used as the primary acoustic baffle material. However, SADM baffles have many undesirable characteristics such as high density, poor machinability, high lead content and depth dependent acoustical behavior.
The study of baffle materials is an under-represented area of sonar design. Most sonar transducer research focuses on the electrically active materials and their response to a variety of conditions. Relatively fewer studies have been devoted to understanding the effects of the supporting and baffle materials. This work considers the effects of the entire hydrophone system on the response while developing a method for aiding in proper system material selection.
This was accomplished by first developing a model for a transducer's response in a variety of conditions. The response was validated with numerical finite-element models and experiments. Next, a generic model was developed that allows any number of layers with any material to be analyzed. This generic model is applied in concert with a material optimization method to aid in the selection of materials that will improve the transducer's response. The tools are finally applied to a simple real world problem to illustrate its strengths and weaknesses. / text
|
35 |
Design, Fabrication, and Testing of High-Frequency High-Numerical-Aperture Annular Array Transducer for Improved Depth-of-Field Photoacoustic MicroscopyLu,huihong Unknown Date
No description available.
|
36 |
Fibre optic pressure transducers for disturbance measurements in transient aerodynamic research facilitiesSharifian, Seyed Ahmad January 2003 (has links)
Experiments in the study of transient aerodynamics typically require pressure measurements with a high spatial and temporal resolution. Existing commercial pressure transducers are expensive and they provide a spatial resolution only on the order of millimetres. The full bandwidth of commercial devices (which extends to around 200 kHz) can only be utilised by exposing the transducer to the flow environment with very little thermal or mechanical protection. If insufficient protection is provided, the expensive commercial devices are likely to be damaged. Inexpensive pressure sensors based on extrinsic Fabry-Perot fibre optic interferometry are capable of measurement with a high spatial and temporal resolution. Thermal protection or isolation for these sensors is still required, but they can be exposed directly to the flow if the sensors are disposable (low cost). Excessive thermal or mechanical protection is not required for these sensors because the damaging heat transfer and particle impacts that may occur in transient aerodynamic facilities generally occur after the useful test flow. In this dissertation, a variety of construction techniques for diaphragm-based Fabry-Perot fibre optic pressure sensors were investigated and the advantages and disadvantages of all techniques are compared. The results indicate that using a zirconia ferrule as the substrate, a liquid adhesive as the bonding layer, and a polished copper foil as the diaphragm provide the best results. It is demonstrated that a spatial resolution on the order of 0.1 mm and a bandwidth to more than 100 kHz can be achieved with such constructions. A variety of problems such as hysteresis, response irregularity, low visibility and sensor non-repeatability were observed. By using a thinner bonding layer, a larger bonding area, longer cavity length, increased calibration period, and applying load cycling to the diaphragm, the hysteresis was minimized. Sensor response irregularity was also minimized using a polished diaphragm. Visibility increased to about 90% using active control of the cavity length during the construction process. Non-repeatability was found to be a consequence of adhesive viscoelasticity and this effect was minimized using a thin layer of adhesive to bond the diaphragm to the substrate. Due to the effects of adhesive viscoelasticity, the pressure sensors indicate an error of up to 10% of mean value for the reflected shock pressure. This error could not be further reduced in the current sensors configuration. Some new configurations are proposed to decrease the effect of sensor non-repeatability. The effect of pretensioning the diaphragm was investigated analytically but the results do not indicate any considerable advantage for the levels of pretension likely to be achieved in practice. However, the results do indicate that pretension effects caused by an environmental temperature change can damage the sensor during storage. The effect of the initial diaphragm deflection on the sensor performance and temperature sensitivity was modelled and the results show that an initial diaphragm deflection can improve the sensor performance. The effect of the thermal isolation layer on the sensor performance was also investigated and the results show that for a shock tube diaphragm bursting pressure ratio up to 5.7, heat transfer does not contribute to sensor errors for the first millisecond after shock reflection. However, it was found that the use of a thin layer of low viscosity grease can protect the sensor for about 20 ms while only decreasing its natural frequency by typically 17%. The grease layer was also found to decrease the settling time of a low damping ratio sensor by 40%. The sensor was successfully employed to identify an acoustic disturbance in a shock tube.
|
37 |
The mechanical and resonant behaviour of a dry coupled thickness-shear PZT transducer used for guided wave testing in pipe lineEngineer, Bhavin Arun January 2013 (has links)
The guided wave technique is an ultrasonic technique which is used to monitor large structures in a variety of industry sectors to safeguard against catastrophic failure. The guided wave technique for pipeline inspection has been commercially used since the early 2000s and this facilitates rapid inspection where from a single location over 100 metres of pipeline can be inspected. This technique is currently being used in pipeline infrastructure across the globe. For the technique to be successful it is highly dependent on a numerous of factors including, frequency selection, array designs and pipeline geometries. The transducers used on pipeline are dry coupled and the magnitude of the signal transmitted is dependent on the normal force applied to it. If this force is not controlled the signal being transmitted can degrade and lead to the difficult analysis of a complex signal. In this thesis studies have been undertaken to understand the relationship between dry force coupling of the transducer and the signal received, aligning this connection to classical contact theory. This is then further to extended to the influence surface contact conditions have on the transmission of signal from the transducer. Analysis of the results detected a peak in the operational frequency response which in turn initiated electrical impedance and structural resonance measurements to identify the presence of resonances which are induced by dry coupling. This behaviour was then modelled in FEA software and the validity of the FEA approach was tested against several prototype transducers. This thesis has been funded in joint collaboration between the Engineering Physics and Science Research Council and TWI ltd.
|
38 |
Vibrating transducers for fluid measurementsSurtees, Antony John 22 September 2023 (has links) (PDF)
When a body vibrates in a fluid, some of the fluid is carried with it and the mass loading lowers its resonant frequency. Similarly, when compression of the fluid occurs, there is an added stiffness which by design can be made to predominate. In addition, there is an energy dissipation arising from viscous losses and acoustic radiation. The starting point of this research was a tuning fork with flat rectangular tines, designed to trap a narrow laminar of gas which is forced to pump in and out as the tines vibrate. The increase in kinetic energy, contributed by this high velocity' gas, gives the device a relatively large sensi ti vi ty as a gas density transducer. The change in frequency between vacuum and atmospheric pressure is typically a few percent, during which period the mechanical "Q" remains high enough to keep the fork sharply resonant. A high stability oscillator incorporating the transducer as the frequency controlling element was built. Small piezoelectric Cp2t) elements were used to drive the transducer and pick up the vibrations. A typical stability, equivalent to a pressure change of 0. 05 mBar was achieved. The supporting equipment re qui red for the work centred around a vacuum system with facilities for introducing a range of gases at precise rates. Computer control enabled the transducer's temperature, frequency, and "Q" factor to be measured and stored as the gas pressure was increased from vacuum. Extensive experiments were carried out on a range of tuning fork transducers, including a circular one in which a pair of disks clamped at the center acted as the tines and gave a simple radial gas displacement. Common to all these transducers is, the linearity of 1/f 2 with gas density for pressures above about 50 mBar; a departure from. linearity below this pressure; and below 10 mBar an overriding stiffness effect, where from vacuum to a few mBar the frequency paradoxically increases. The resultant calibration to this non-linear response, while exhibiting high stablility, is unattractive for general use. It has however applications over limited ranges as for example, those of a barometer or altimeter. Insight gained from experience with the double disk resonator, led to a new geometry which has resulted in an extremely viable transducer, without calibration anomalies, and capable of operating in a pressure or dehsity mode. Here, the gas is confined in two cylindrical cavities above and below a thin circular diaphragm, clamped at the periphery and again made to vibrate using p2t elements. In the fundamental mode, the alternating change in cavity volume due to compression and rarefaction of the gas, adds stiffness to the diaphragm. In the next mode, there is no net volume change, but the gas is pumped across the cavities adding inertial loading. No anomalies were experienced in the empirical calibrations obtained for each mode- the fundamental being linear with pressure Cf 2 proportional to Pl, and the first overtone linear with density (1/f 2 proportional to pl. A simple theory, which is sufficiently accurate for general design purposes, has been developed. Future work, which is of a straightforward development nature, is proposed. The high degree of stability achieved for these vibrating structures was later realised in a different geometry. In this, a long rod was excited into a torsional mode so as to produce two nodes a quarter wavelength from. either end. By securing the rod at these points and immersing the lower length in a liquid, a sensitive, robust, viscometer was produced. Driving the rod with a burst of oscillations, shears the liquid in contact with it. By removing this drive and measuring the rate of vibrational decay under the action of viscous dissipatiop, an indication of the viscosity can be obtained. The features of a pure shearing force, and the real-time, on-line nature of the device, makes it attractive for the characterisation of both thick and thin liquids and automatic process control.
|
39 |
Ultrasonic cleaning of latex particle fouled membranesLamminen, Mikko O. 06 January 2005 (has links)
No description available.
|
40 |
Development of a Molecular Optoelectronic TransducerO'Donnell, Ryan M. 01 July 2010 (has links)
No description available.
|
Page generated in 0.0628 seconds