• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 38
  • 23
  • 15
  • 13
  • 8
  • 8
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 246
  • 246
  • 37
  • 36
  • 30
  • 30
  • 29
  • 29
  • 24
  • 24
  • 20
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Real-Time Image Processing Using Acousto-Optic Bragg Diffraction

Dunn, Derrek Butler 29 July 2003 (has links)
Optical image processing systems using an acousto-optic cell have been studied previously. However, these previous studies have been limited to two diffracted order in the Bragg regime and two spatial dimensions. Some comparisons between experimental data and theoretical predictions have been made. This dissertation studies image processing by acousto-optic Bragg diffraction to perform image enhanment. Theoretical results involving two diffracted orders in three spatial dimensions is presented. Experimental data is presented that confirms the validity of the theoretical results. Detailed analysis of several optical image processing system using acousto-optic modulators is presented. Also, the methodology use to derive an analytically expression in three spatial dimension for the interaction of an arbitrary light profile and a rectangular sound column in an acousto-optic cell is presented. Lastly, the ability to change the characteristics of the derived transfer function that mathematically represents the interaction of light and sound inside the acousto-optic cell is discussed and future research topics is given. / Ph. D.
42

Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines

Black, Paul Randall 08 August 2007 (has links)
Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines Design and prediction of thermoacoustic instabilities is a major challenge in aerospace propulsion and the operation of power generating gas turbine engines. This is a complex problem in which multiple physical systems couple together. Traditionally, thermoacoustic models can be reduced to dominant physics which depend only on flame dynamics and acoustics. This is the general approach adopted in this research. The primary objective of this thesis is to describe how to obtain acoustic transfer functions using finite element modeling. These acoustic transfer functions can be coupled with flame transfer functions and other dynamics to predict the thermoacoustic stability of gas turbine engines. Results of this research effort can go beyond the prediction of instability and potentially can be used as a tool in the design stage. Consequently, through the use of these modeling tools, better gas turbine engine designs can be developed, enabling expanded operating conditions and efficiencies. This thesis presents the finite element (FE) methodology used to develop the acoustic transfer functions of the Combustion System Dynamics Laboratory (CSDL) gaseous combustor to support modeling and prediction of thermoacoustic instabilities. In this research, several different areas of the acoustic modeling were addressed to develop a representative acoustics model of the hot CSDL gaseous combustor. The first area was the development and validation of the cold acoustic finite element model. A large part of this development entailed finding simple but accurate means for representing complex geometries and boundary conditions. The cold-acoustic model of the laboratory combustor was refined and validated with the experimental data taken on the combustion rig. The second stage of the research involved incorporating the flame into the FE model and has been referred to in this thesis as hot-acoustic modeling. The hot-acoustic model also required the investigation and characterization of the flame as an acoustic source. The detailed mathematical development for the full reacting acoustic wave equation was investigated and simplified sufficiently to identify the appropriate source term for the flame. It was determined that the flame could be represented in the finite element formulation as a volumetric acceleration, provided that the flame region is small compared to acoustic wavelengths. For premixed gas turbine combustor flames, this approximation of a small flame region is generally a reasonable assumption. Both the high temperature effects and the flame as an acoustic source were implemented to obtain a final hot-acoustic FE model. This model was compared to experimental data where the heat release of the flame was measured along with the acoustic quantities of pressure and velocity. Using these measurements, the hot-acoustic FE model was validated and found to correlate with the experimental data very well. The thesis concludes with a discussion of how these techniques can be utilized in large industrial-size combustors. Insights into stability are also discussed. A conclusion is then presented with the key results from this research and some suggestions for future work. / Master of Science
43

Electromagnetic Backscattering Studies of Nonlinear Ocean Surfaces

Pan, Guangdong 18 March 2008 (has links)
No description available.
44

Evaluation of night vision devices for image fusion studies

Cheng, Wee Kiang 12 1900 (has links)
Approved for public release; distribution in unlimited. / Night Vision Devices (NVD) using Image Intensification (II) technology are among the most important sensors used by ground troops and aviators in night operations for modern combat. With the intensified images from these devices, soldiers can see an enemy's movement better and further in darkness. This thesis explores different test methods in evaluating the performances and sensitivities of several NVDs for future image fusion studies. Specification data such as sensitivity, resolution (Modulation Transfer Function) and pixel size are obtained. Comparative analyses of the collected results are made to characterize the performances of the different NVDs. A new method using MATLAB programming to objectively analyze digitized images for characterization of II based NVDs is proposed. This test method can also be extended to the evaluation of Thermal Imaging (TI) systems for comparative analysis with II NVDs. In addition, the feasibility of testing NVDs using both II and TI technologies, with common operating conditions and target boards is discussed. Finally, the potential of using these digitized images for image fusion studies is verified with the test and evaluation results. / Republic of Singapore
45

Análise óptica de sistemas eletro-ópticos por meio do cálculo da função de transferência de modulação / Optical analyze of electro-optical systems by modulation transfer function calculus

Barbarini, Elisa Signoreto 13 April 2012 (has links)
Um grande número de equipamentos utilizam sistemas ópticos ou eletro-ópticos em suas estruturas, dentre esses equipamentos tem-se os microscópios, telescópios, equipamentos médicos, câmeras de satélites, entre outros. Com isso a necessidade de métodos e ferramentas que auxiliem na determinação do desempenho e da qualidade dos sistemas ópticos é crescente. Um dos métodos mais utilizados para realizar a análise de sistemas ópticos é a determinação da Função de Transferência de Modulação (Modulation Transfer Function - MTF). A MTF representa uma verificação quantitativa e direta da qualidade da imagem, e, além disso, é um teste objetivo que pode ser utilizado em sistemas ópticos concatenados. Esse trabalho apresenta a implementação de um software, denominado de SMTF (Software Modulation Transfer Function), para cálculo da MTF de equipamentos eletro-ópticos. O software foi utilizado para realizar o cálculo da MTF do Retinógrafo Digital, Imageador Termal e Microscópio Cirúrgico Oftalmológico. A informação da MTF auxilia na análise do alinhamento e medição da qualidade óptica, e também define o limite de resolução dos sistemas ópticos, por meio do gráfico da MTF. Os resultados obtidos, com o Retinógrafo e o Imageador Termal, foram comparados com os valores teóricos adquiridos pelo Zemax, que é um software utilizado para desenvolvimento e análise de lentes ou conjuntos ópticos. Já para o Microscópio os resultados obtidos da MTF foram comparados com os resultados obtidos pela MTF medida do Microscópio marca Zeiss, considerado como padrão de qualidade de Microscópios Oftalmológicos. Os resultados obtidos demonstram que o software apresentou ótimo desempenho permitindo uma análise direta e objetiva do comportamento de sistemas ópticos. Com auxílio do software foi feito o alinhamento do Retinógrafo Digital e do Imageador Termal e foi verificada a qualidade da imagem do Microscópio Cirúrgico Oftalmológico. / A number of devices use optics or electro-optics in their structures, such as microscopes, telescopes, medical equipments, satellites cameras, among others. The need for methods and tools that assist in determining the performance and quality of optical systems is increasing. One of the methods most used to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality, and moreover, it is an objective test that can be used in concatenated optical systems. This paper presents the implementation of software, called SMTF (Software Modulation Transfer Function), in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The information MTF aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems, from the graph of MTF. The results obtained with the Fundus Camera and de Thermal Imager were compared with the theorical values acquired by the Zemax, wich is a software used for analysis and development of optical assemblies or lenses. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope. The results show that the software has a good performance by allowing a straightforward analysis of the behavior of optical systems. With the aid of the software was made to align the Fundus Camera and the Thermal Imager and the image quality of Surgical Microscope Ophthalmology was verified.
46

$L_\infty$-Norm Computation for Descriptor Systems

Voigt, Matthias 15 July 2010 (has links) (PDF)
In many applications from industry and technology computer simulations are performed using models which can be formulated by systems of differential equations. Often the equations underlie additional algebraic constraints. In this context we speak of descriptor systems. Very important characteristic values of such systems are the $L_\infty$-norms of the corresponding transfer functions. The main goal of this thesis is to extend a numerical method for the computation of the $L_\infty$-norm for standard state space systems to descriptor systems. For this purpose we develop a numerical method to check whether the transfer function of a given descriptor system is proper or improper and additionally use this method to reduce the order of the system to decrease the costs of the $L_\infty$-norm computation. When computing the $L_\infty$-norm it is necessary to compute the eigenvalues of certain skew-Hamiltonian/Hamiltonian matrix pencils composed by the system matrices. We show how we extend these matrix pencils to skew-Hamiltonian/Hamiltonian matrix pencils of larger dimension to get more reliable and accurate results. We also consider discrete-time systems, apply the extension strategy to the arising symplectic matrix pencils and transform these to more convenient structures in order to apply structure-exploiting eigenvalue solvers to them. We also investige a new structure-preserving method for the computation of the eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils and use this to increase the accuracy of the computed eigenvalues even more. In particular we ensure the reliability of the $L_\infty$-norm algorithm by this new eigenvalue solver. Finally we describe the implementation of the algorithms in Fortran and test them using two real-world examples.
47

Análise óptica de sistemas eletro-ópticos por meio do cálculo da função de transferência de modulação / Optical analyze of electro-optical systems by modulation transfer function calculus

Elisa Signoreto Barbarini 13 April 2012 (has links)
Um grande número de equipamentos utilizam sistemas ópticos ou eletro-ópticos em suas estruturas, dentre esses equipamentos tem-se os microscópios, telescópios, equipamentos médicos, câmeras de satélites, entre outros. Com isso a necessidade de métodos e ferramentas que auxiliem na determinação do desempenho e da qualidade dos sistemas ópticos é crescente. Um dos métodos mais utilizados para realizar a análise de sistemas ópticos é a determinação da Função de Transferência de Modulação (Modulation Transfer Function - MTF). A MTF representa uma verificação quantitativa e direta da qualidade da imagem, e, além disso, é um teste objetivo que pode ser utilizado em sistemas ópticos concatenados. Esse trabalho apresenta a implementação de um software, denominado de SMTF (Software Modulation Transfer Function), para cálculo da MTF de equipamentos eletro-ópticos. O software foi utilizado para realizar o cálculo da MTF do Retinógrafo Digital, Imageador Termal e Microscópio Cirúrgico Oftalmológico. A informação da MTF auxilia na análise do alinhamento e medição da qualidade óptica, e também define o limite de resolução dos sistemas ópticos, por meio do gráfico da MTF. Os resultados obtidos, com o Retinógrafo e o Imageador Termal, foram comparados com os valores teóricos adquiridos pelo Zemax, que é um software utilizado para desenvolvimento e análise de lentes ou conjuntos ópticos. Já para o Microscópio os resultados obtidos da MTF foram comparados com os resultados obtidos pela MTF medida do Microscópio marca Zeiss, considerado como padrão de qualidade de Microscópios Oftalmológicos. Os resultados obtidos demonstram que o software apresentou ótimo desempenho permitindo uma análise direta e objetiva do comportamento de sistemas ópticos. Com auxílio do software foi feito o alinhamento do Retinógrafo Digital e do Imageador Termal e foi verificada a qualidade da imagem do Microscópio Cirúrgico Oftalmológico. / A number of devices use optics or electro-optics in their structures, such as microscopes, telescopes, medical equipments, satellites cameras, among others. The need for methods and tools that assist in determining the performance and quality of optical systems is increasing. One of the methods most used to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality, and moreover, it is an objective test that can be used in concatenated optical systems. This paper presents the implementation of software, called SMTF (Software Modulation Transfer Function), in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The information MTF aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems, from the graph of MTF. The results obtained with the Fundus Camera and de Thermal Imager were compared with the theorical values acquired by the Zemax, wich is a software used for analysis and development of optical assemblies or lenses. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope. The results show that the software has a good performance by allowing a straightforward analysis of the behavior of optical systems. With the aid of the software was made to align the Fundus Camera and the Thermal Imager and the image quality of Surgical Microscope Ophthalmology was verified.
48

$L_\infty$-Norm Computation for Descriptor Systems

Voigt, Matthias 15 July 2010 (has links)
In many applications from industry and technology computer simulations are performed using models which can be formulated by systems of differential equations. Often the equations underlie additional algebraic constraints. In this context we speak of descriptor systems. Very important characteristic values of such systems are the $L_\infty$-norms of the corresponding transfer functions. The main goal of this thesis is to extend a numerical method for the computation of the $L_\infty$-norm for standard state space systems to descriptor systems. For this purpose we develop a numerical method to check whether the transfer function of a given descriptor system is proper or improper and additionally use this method to reduce the order of the system to decrease the costs of the $L_\infty$-norm computation. When computing the $L_\infty$-norm it is necessary to compute the eigenvalues of certain skew-Hamiltonian/Hamiltonian matrix pencils composed by the system matrices. We show how we extend these matrix pencils to skew-Hamiltonian/Hamiltonian matrix pencils of larger dimension to get more reliable and accurate results. We also consider discrete-time systems, apply the extension strategy to the arising symplectic matrix pencils and transform these to more convenient structures in order to apply structure-exploiting eigenvalue solvers to them. We also investige a new structure-preserving method for the computation of the eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils and use this to increase the accuracy of the computed eigenvalues even more. In particular we ensure the reliability of the $L_\infty$-norm algorithm by this new eigenvalue solver. Finally we describe the implementation of the algorithms in Fortran and test them using two real-world examples.
49

Réalisation d’un système de substitution sensorielle de la vision vers l’audition

Lescal, Damien January 2014 (has links)
Ce projet de recherche a été mené dans le cadre du groupe de recherche NECOTIS (Neurosciences Computationnelles et Traitement Intelligent du Signal). Ce groupe de recherche agit principalement dans le domaine du traitement de l’image et de l’audio grâce à des méthodes de traitement de signal bio-inspirées. Différentes applications ont été développées en reconnaissance de la parole, dans la séparation de sources sonores ou encore en reconnaissance d’images. Bien qu’ils existent depuis plus de quarante ans, les systèmes d’aide aux personnes atteintes de déficiences visuelles, que cela soit des prothèses visuelles (invasif) ou des système de substitution sensorielle (non invasif), n’ont pas percé dans le milieu du handicap. Il serait difficile d’imputer cet état de fait à des limitations technologiques : depuis les premières approches, les prothèses visuelles ou les systèmes de substitution sensorielle n’ont cessé de se perfectionner et de se diversifier. Toutefois, si la question de savoir comment transmettre le signal est bien documentée, la question de savoir quel signal transmettre a été plus rarement abordée. Différents systèmes ont été développés mais le plus impressionnant est le récit des utilisateurs de tels systèmes. Ainsi, il fait plaisir de lire que l’artiste Neil Harbisson, qui ne voit aucune couleur, explique comment une caméra attachée à se tête lui permet d’entendre des couleurs et ainsi de pouvoir peindre [Montandon, 2004]. Un autre exemple tout aussi impressionnant, la scientifique Wanda Díaz-Merced, qui travaille pour xSonify, explique comment elle analyse différentes données en les encodant de façon sonore [Feder, 2012]. C’est dans ce cadre que ce projet de substitution sensorielle de la vision vers l’audition a été développé. En effet, nous avons utilisé le traitement de signal bio-inspiré afin d’extraire différentes caractéristiques représentatives de la vision. De plus, nous avons essayé de générer un son agréable à l’oreille et représentatif de l’environnement dans lequel évolue la personne. Ce projet a donc davantage été axé sur la nature du signal transmis à la personne ayant des déficiences visuelles.
50

Development of chironomid-based transfer functions for surface water quality parameters and temperature, and their application to Quaternary sediment records from the South Island, New Zealand

Woodward, Craig Allan January 2006 (has links)
This thesis resulted in the development of robust chironomid-based transfer-functions for February mean air temperature and the concentration of total nitrogen (TN) in lake-water. The New Zealand transfer-functions for both variables compare favourably with chironomid-based transfer-functions for equivalent variables from elsewhere in the world, and diatom-based transfer-functions for nutrients and lake production from New Zealand. The application of the temperature and TN transfer-functions provided insight into New Zealand climate conditions during the last glacial and served as validation for the reconstructions. Chironomid-based Temperature reconstructions from lake silts preserved in the banks of Lyndon Stream indicate a maximum cooling of ca 4 ℃ between 26.6 and 24.5 ka BP, which is consistent with estimates based on beetles and plant macrofossils. A cooling of 4 ℃ is insufficient to explain the lack of canopy tree pollen in many New Zealand pollen records at this time. Other environmental parameters additional to temperature may have limited the expansion forest cover. The chironomid-based TN reconstructions infer a trend of rapidly deteriorating water-quality in a small doline in north-west Nelson, in the South Island of New Zealand following deforestation immediately surrounding the lake ca. 1970 AD. The overall trend and timing of eutrophication inferred from the chironomids was consistent with other biological proxies and actual observations of changes in lake water quality. The chironomid-based transfer-functions provide a valuable new tool for the study of longterm climate variability and improving our understanding of the response of aquatic ecosystems to long-term natural and human induced environmental change in New Zealand lakes. I have identified some possibilities for future research which should improve the performance of these transfer-functions. The improvement of the chironomid taxonomy and the expansion of the training set should be the highest priorities.

Page generated in 0.0982 seconds