Spelling suggestions: "subject:"transformer.""
171 |
Estudos de ligas de Fe-Ti laminadas para utilização em máquinas elétricas / Study of rolled Fe-Ti alloys for using in electric machinesGuilherme Origo Fulop 02 March 2018 (has links)
O presente trabalho teve como foco um problema que vem se tornando cada vez mais grave nos dias de hoje, já que, com o crescimento das zonas urbanas, algumas residências estão se aproximando dos transformadores de potência. Transformadores são máquinas cuja função é aumentar ou diminuir a diferença de potencial de uma rede elétrica, porém, eles geram um nível significativo de ruído, podendo ser prejudicial à saúde. Esse ruído é causado pela magnetostricção pelas chapas de Fe-Si as quais compõem o núcleo. Assim, o intuito desse trabalho foi estudar duas ligas de Fe-Ti, para averiguar seu comportamento magnetostrictivo. Além disso, é importante estudar as propriedades magnéticas dessas ligas, a fim de se analisar quais são as perdas magnéticas associadas a essas ligas. Portanto, também foram feitas medidas de indução magnética, permeabilidade magnética e resistividade elétrica. Também foram feitas análises de microscopia eletrônica de varredura, para análise do tamanho e morfologia dos grãos, difratometria de raios X, para identificação das fases presentes e difração de elétrons retroespalhados, para identificação da textura. Todas essas medidas foram feitas para as ligas de Fe-Ti e uma liga de Fe-Si comercial de grão orientado e os resultados foram comparados entre si. As ligas de Fe-Ti apresentaram valores de magnetostricção menores do que a liga de Fe-Si, porém, apresentaram valores bem maiores quando analisadas as perdas magnéticas. Com isso, foi possível fazer uma primeira análise das ligas de Fe-Ti, criando diversas possibilidades para estudos futuros. / The present research had as focus a problem that is becoming very serious nowadays, since with the growth of urban areas, some households are approaching the power transformers. Power transformers are machines whose function is to increase or decrease the potential difference of a power grid, but they generate a significant level of noise, which can be harmful to human health. This noise is created by the magnetostriction of the Fe-Si plates that compose the core. Thus, the purpose of this research was to study two Fe-Ti alloys to investigate their magnetostrictive behavior. In addition, it is important to study the magnetic properties of these alloys in order to analyze the magnetic losses associated with these samples. Therefore, measurements of magnetic induction, magnetic permeability and electrical resistivity were also made. Were made analyzes of scanning electron microscopy to investigate the size and morphology of the grains, X-ray diffraction, to identify the phases that are present in the material and electron backscatter diffraction to identify the texture.These characterizations were made for the Fe-Ti alloys and a commercial grain-oriented Fe-Si alloy. The results were compared to each other. Fe-Ti alloys showed lower magnetostriction values than the Fe-Si alloy, however they presented highest values of magnetic losses. As a result, it was possible to make a first analysis of the Fe-Ti alloys properties, creating several possibilities for future studies in order to improve Fe-Ti alloys properties.
|
172 |
Transformadores para instrumentos ópticos: aspectos da viabilidade do seu uso pelas empresas do setor elétrico brasileiro. / Optical instrument transformers: viability aspects of their application by brazilian electric utilities.Dorival Kitakawa Lima 31 March 2009 (has links)
Os transformadores para instrumentos (TIs) são equipamentos essenciais para a realização das funções de medição e de proteção nos sistemas elétricos de potência. O mau funcionamento dos TIs nos sistemas de proteção pode provocar tanto atuações indevidas como falhas de operação e, em ambos os casos, acarretará prejuízos à concessionária ou a terceiros, podendo, ainda, serem gerados danos materiais ou pessoais. Quando os transformadores de corrente (TCs) ou de potencial (TPs) estão instalados em sistemas de medição para faturamento e não funcionam com a precisão necessária, milhares ou milhões de reais podem ser perdidos por ano, seja por quem vende a energia, seja por quem a compra. O presente estudo, analisa a viabilidade (ou possibilidade) da utilização de TIs ópticos no sistema elétrico de potência brasileiro. Foram realizados comparativos técnicos e econômicos entre os TIs convencionais e os ópticos, sendo que no aspecto econômico são analisadas situações em que maus funcionamentos (ou falhas) dos TIs convencionais podem causar prejuízos às concessionárias. São apresentados levantamentos de dados indicativos das quantidades de TIs em uso e dos preços de aquisição desses equipamentos. Também é apresentado o resultado de uma enquete que avaliou o grau de familiaridade que os engenheiros do setor elétrico brasileiro tem com a tecnologia de TIs ópticos. O trabalho apurou que os TIs ópticos demonstram superioridades técnicas e econômicas frente aos TIs convencionais, mas que, para que eles sejam utilizados mais amplamente nas subestações, além de uma maior divulgação dos mesmos por parte de seus fabricantes, ainda são necessários esforços de adaptação e/ou aplicação de novas tecnologias que facilitem a conexão dos TIs ópticos aos sistemas de proteção e medição em uso. O trabalho indica também que esse problema, no futuro, deverá ser eliminado com a natural modernização das subestações e com a implantação de redes de comunicação aderentes à norma IEC 61850-9-2. / The instruments transformers (ITs) are essential equipment to perform the measurement and protection functions in electrical power systems. The malfunctioning of ITs in protection systems can cause undue actuations as well as operation failures and, in both cases, the utilities or third parties will face financial losses and, also, personal or material damages can be generated. When current transformers (CTS) or potential transformers (PTs) are used for revenue metering applications and do not work with the necessary precision, thousands or millions of reais may be lost per year, either by those who sell energy, or by whom purchase it. This study examines the viability of optical ITs applications in brazilian electric power systems. Technical and economical comparisons between conventional and optical ITs were carried out, and economic aspects of situations in which malfunctions (or failures) of conventional ITs can cause financial losses to utilities are discussed. Data about quantities and prices of conventional ITs in use in Brazil are shown. Also, results of a research evaluating the familiarity of engineers working in electric power utilities with the optical ITs technology are presented. The study found that optical ITs have shown technical and economical superiorities over conventional ITs, but, in order to be widely used in substations there are still needed adaptation efforts and/or application of new technologies that facilitate the connection of optical ITs to protection and measurement systems already in use. The present work also indicates that this problem, in the future, should be eliminated by natural modernization of substations and the installation of communication networks compliant to the IEC 61850-9-2 standard.
|
173 |
Modelo elétrico da impedância do transformador baseado em células RLC passivasGuimarães, Rogério Coelho January 2010 (has links)
No novo contexto do setor elétrico brasileiro, as concessionárias passam a ter uma nova postura quanto à gestão. A energia elétrica, como produto, como negócio, deve levar lucro às empresas concessionárias. Começam a dar mais importância aos custos, entendendo que vários aspectos técnicos devem ser analisados, visando reduzir perdas substanciais. Assim sendo, o transformador de potência assume uma posição destacada, considerando sua posição estratégica no sistema elétrico, fundamental no processo de transporte e entrega de energia elétrica. Por este motivo vem despertando o interesse no desenvolvimento de estudos e pesquisas no sentido de aumentar sua vida útil. O método de Análise da Resposta em Frequência da impedância do transformador permite obter a “assinatura” do mesmo, a fim de verificar futuras degradações. Este método é adotado por várias empresas em todo o mundo, há mais de três décadas. Embora sua ampla aplicação entre muitas técnicas utilizadas na monitoração e análise de falhas em equipamentos, até agora não houve consenso na interpretação dos resultados obtidos por este método. A dificuldade de correlacionar parâmetros com prováveis falhas tem suscitado pesquisas para obtenção de resultados confiáveis e de interpretação fácil. Este trabalho objetiva determinar um modelo elétrico que represente a característica da resposta em frequência para fins de armazenamento de dados e simulações. A partir de dados reais do teste de resposta em frequência da impedância inseridos no modelo proposto, através de um programa computacional, foi verificada a confiabilidade nas respostas obtidas, comparadas com as reais. Os resultados obtidos asseguram que o modelo proposto é viável de ser aplicado. / In the new context of the Brazilian electric industry, the electric power provider companies have adopted a new administration posture. The electric power, as a product and business, should make the companies profitable. They have been paying more attention to the costs, .learning that many technical aspects should be analyzed in order to reduce substantial losses. Therefore, the power transformer takes an outstanding position, considering its strategic position in the electric system and being essential in the process of transport and delivery of the electric power. For this reason, there has been an interest in the development of studies and research in order to increase its useful life. The method of Frequency Response Analysis of impedance of the power transformer permits to obtain reference parameters of this one, in order to verify future degradations. This method has been adopted by many companies throughout the world for over three decades. Despite its wide application among several techniques used in the supervision and analysis of faults of equipments, there has been no consensus in the interpretation of the results obtained by this method so far. The difficulty of correlating the parameters with probable faults have increased research in order to obtain reliable results and of easy interpretation. This study aims to determine an electric model that represents the characteristic of the frequency response in order to store data and simulations. Starting from the real data of the FRA test inserted in the proposed model through a computer program, the reliability of the obtained responses were verified and compared with the real data. The obtained results assure that the proposed model is viable and can be applied.
|
174 |
Design and Experimental Investigation of 500kV Current Transformer Seismic Retrofit Utilizing Structure Rocking and Supplemental Damping with Self-CenteringPalnikov, Ilya S. 10 July 2017 (has links)
Electrical substations perform a key role in electrical transmission and distribution; the ability for a substation to remain functional during and after a seismic event contributes significantly to the resilience of the clients supplied. Many legacy components currently installed in the main grid substations were designed with minimal consideration of lateral loads and are not qualified per IEEE693. One of the more critical high-voltage substation components that are vulnerable to earthquake damage is the 500kV freestanding current transformer (CT). The CT is particularly vulnerable due to the slenderness and mass distribution of the component. Current transformers are typically constructed from a combination of aluminum and brittle porcelain. Two novel retrofit measures were investigated utilizing base rocking and supplemental damping to reduce the seismic amplification in the CT while also potentially providing post-earthquake self-centering capability. The retrofit measures utilize both shift in system frequency and energy dissipation through supplemental damping to reduce seismic demands on the CT. The purpose of the research was to conceptually develop, detail design, analyze and experimentally validate the retrofit measures. A desired feature of the retrofit measures was for minimal or no residual displacement following the seismic event, which was implemented in the retrofit through a preloaded centering mechanism. Based on the analyses and experiments, the proposed retrofit measures exhibited significantly decreased demands on the CT and true self-centering.
|
175 |
Physical systems for the active control of transformer noiseLi, Xun January 2000 (has links)
Traditional means of controlling sound radiated by electrical power transformers involve the construction of large expensive barriers or full enclosures, which cause maintainability and cooling problems. One promising alternative is to use active noise control to cancel the noise. This thesis is concerned with one of the many problems which need to be investigated to develop a practical active noise cancellation system for transformers. This work, in particular, is concerned with the physical system design which includes the selection of the control source types and the evaluation of the near-field sensing strategies. Loudspeakers have been widely used in the past as an acoustic source for canceling transformer noise. The principal disadvantage of using loudspeakers is that to achieve global noise control, a large number, driven by a multi-channel controller, are required. However, if large panels are used in place of loudspeakers as control sources, it is possible that the number of the control sources and complexity of the controller could be reduced substantially. In addition to reducing the number of control sources and simplifying their application, panel sound sources could also overcome some disadvantages of the loudspeakers, such as limited life and deterioration due to the weather. Thus, part of the work described in this thesis is concerned with the development of a resonant curved panel with a backing cavity as an acoustic type source. The advantages of using a curved panel rather than a flat panel are twofold: first a curved panel is more easily excited by the extensional motion of the piezoelectric patch actuators; and second, it is more difficult to adjust the resonance frequencies of the efficient modes of a flat panel than of a curved panel. The analytical models for the design of the panel cavity systems have been developed. As an example, a resonant curved panel with a backing cavity system was constructed and the sound radiation of the system was measured. Results show that a resonant panel-cavity sound source could be used as an alternative to a number of loudspeakers for active cancellation of electric power transformer noise. Due to the advantages of using the vibration type control sources, two types of vibration control sources (inertial electrodynamic shakers and piezoelectric patch actuators) were considered and the mechanical output of the inertial shakers has been compared with that of the piezoelectric actuators. In contrast with the piezoelectric actuators, the resonance frequencies of the inertial shakers can be tuned to the frequencies of interest using simple tuning procedures, so that the output efficiency of the shakers can be increased. The output performance was evaluated for two types of actuators by measuring the structural response of either a panel or a transformer when excited by the actuators at half their rated voltage input. Results demonstrated that a much larger output amplitude at the frequency of interest can be achieved by the tuned inertial type actuators. Two near-field sensing strategies, the minimization of the sum of the sound intensities and the minimization of the sum of the squared sound pressures, have been studied. A quadratic expression was derived for the minimization of the sum of the sound intensities in the near-field. To evaluate the control performances achieved using both sensing strategies, a flat-panel was modelled with a harmonic point force disturbance and several point force control sources. Simulation results show that the control performance could be improved by minimizing the sum of the sound intensities in the hydrodynamic near-field, provided that a very large number of error sensors were used, otherwise better results were achieved using near-field squared pressure sensing. Both sensing strategies were used to predict the noise reductions that resulted for the active noise control of a small transformer in the laboratory environment and for a large electrical power transformer on site. To optimize the locations of the control sources (for the large transformer on site) and the locations of the error sensors (for the small transformer in the laboratory environment), a genetic algorithm (GA), which is an evolutionary optimization technique, was employed as a search procedure to optimize the control source and error sensor locations. The results showed that the control source locations and/or the error sensor locations must be optimized to achieve the maximum sound reduction for either error sensing strategy, especially for the sound intensity minimization; otherwise, the sound field level may increase after control due to the character of the cost function (the sum of the sound intensities). The simulation results were experimentally validated for the small transformer in the laboratory environment. Due to the limitation of the number of controller channels, the control performance was only evaluated for squared pressure minimization. The results demonstrated that for the case of 8 control sources and 8 error sensors, at 100 Hz, an average sound pressure reduction of 15.8 dB was achieved when evaluated at 528 monitoring locations at 0.25 m intervals on a surface that surrounded the transformer. / Thesis (Ph.D.)--Engineering (Department of Mechanical Engineering), 2000.
|
176 |
CMOS low noise amplifier design utilizing monolithic transformersZhou, Jianjun J. 18 August 1998 (has links)
Full integration of CMOS low noise amplifiers (LNA) presents a challenge for low
cost CMOS receiver systems. A critical problem faced in the design of an RF CMOS LNA
is the inaccurate high-frequency noise model of the MOSFET implemented in circuit
simulators such as SPICE. Silicon-based monolithic inductors are another bottleneck in RF
CMOS design due to their poor quality factor.
In this thesis, a CMOS implementation of a fully-integrated differential LNA is
presented. A small-signal noise circuit model that includes the two most important noise
sources of the MOSFET at radio frequencies, channel thermal noise and induced gate
current noise, is developed for CMOS LNA analysis and simulation. Various CMOS LNA
architectures are investigated. The optimization techniques and design guidelines and
procedures for an LC tuned CMOS LNA are also described.
Analysis and modeling of silicon-based monolithic inductors and transformers are
presented and it is shown that in fully-differential applications, a monolithic transformer
occupies less die area and achieves a higher quality factor compared to two independent
inductors with the same total effective inductance. It is also shown that monolithic
transformers improve the common-mode rejection of the differential circuits. / Graduation date: 1999
|
177 |
Numerical Analysis of Heat Transfer and Fluid Flow in Heat Exchangers with Emphasis on Pin Fin TechnologyNabati, Hamid January 2012 (has links)
One of the most important industrial processes is heat transfer, carried out by heat exchangers in single and multiphase flow applications. Despite the existence of well-developed theoretical models for different heat transfer mechanisms, the expanding need for industrial applications requiring the design and optimization of heat exchangers, has created a solid demand for experimental work and effort. This thesis concerns the use of numerical approaches to analyze and optimize heat transfer and fluid flow in power generation industry, with emphasis on pin fin technology. This research begins with a review on heat transfer characteristics in surfaces with pin fins. Different pin fins shapes with various flow boundaries were studied, and thermal and hydraulic performances were investigated. The impact of parameters such as inlet boundary conditions, pin fin shapes, and duct cross-section characteristics on both flow and heat transfer were examined. Two important applications in power generation industry were considered for this study: power transformer cooling, and condenser for CO2 capturing application in oxy-fuel power plants. Available experimental data and correlations in the literature have been used for models validation. For each case, a model based on current configuration was built and verified, and was then used for optimization and new design suggestions. All numerical modeling was performed using commercial CFD software. A basic condenser design was suggested and examined, supplemented by the use of pin fin technology to influence the condensation rate of water vapour from a CO2/H2O flue gas flow. Moreover an extensive review of numerical modeling approaches concerning this condensation issue was conducted and presented. The analysis results show that the drop-shaped pin fin configuration has heat transfer rates approximating those of the circular pin configuration, and the drop-shaped pressure losses are less than one third those of the circular. Results for the power transformer cooling system show those geometrical defects in the existing system are easily found using modeling. Also, it was found that the installation of pin fins in an internal cooling passage can have the same effect as doubling the radiator’s height, which means a more compact cooling system could be designed. Results show that a condensation model based on boundary layer theory gives a close value to experimental correlations. Considering a constant wall temperature, any increase in CO2 concentration results in lower heat transfer coefficients. This is a subsequence of increased diffusivity resistance between combustion gas and condensing boundary layer. Also it was shown that sensitivity of heat transfer rate to inlet temperatures and velocity values decreased when these parameters increased. The application of numerical methods concerning the condensation process for CO2 capturing required significant effort and running time as the complexity of multiphase flow was involved. Also data validation for the CO2/H2O condenser was challenging since this is quite a new application and less experimental data (and theoretical correlations) exist. However, it is shown that models based on numerical approaches are capable of predicting trends in the condensation process as well as the effect of the non-condensable CO2 presence in the flue gas. The resulting data, conclusions, applied methodology can be applied to the design and optimization of similar industrial heat exchangers, such as oil coolers which are currently working at low efficiency levels. It can also be used in the design of electronic components, cooling of turbine blades, or in other design applications requiring high heat flux dissipation. Finally, the finding on water vapour condensation from a binary mixture gas can be referenced for further research and development in this field.
|
178 |
A Design-Oriented Framework to Determine the Parasitic Parameters of High Frequency Magnetics in Switching Power Supplies using Finite Element Analysis TechniquesShadmand, Mohammad 2012 May 1900 (has links)
Magnetic components, such as inductors and transformers, have important effects on the efficiency and performance of switching power supplies; their parasitic properties directly impact the high frequency properties which can cause lot-to-lot variation or unanticipated and non-ideal operation. They are also amongst the most problematic components to design, often requiring numerous design-prototype-test interactions. The electrostatic and electromagnetic analysis of wound components has become more important recently to predict their performance and frequency behavior.
Accurate prediction and design of winding parasitic parameters of leakage inductance and winding capacitance for high frequency inductors and transformers in switching power supplies is fundamental to improve performance, lower cost, and speed time to market. This thesis presents a methodology and process to obtain accurate prediction of the inter- and intra-winding capacitances of high frequency magnetic components. Application examples considered are a single-winding choke, a coupled inductor filter, and a multi-winding transformer. Analytical approach for determination of parasitic capacitances in high frequency magnetic components will be covered also. Comparison of the FEA results using JMAG with experimental and empirical formula results show good agreement, supporting the method as a model-based design tool with the potential to significantly reduce the design-prototype-test cycle commonly needed with sophisticated magnetic designs.
|
179 |
Dynamic transformer protection a novel approach using state estimationNtwoku, Stephane Ntuomou 14 November 2012 (has links)
Transformers are very important parts of any electrical network, and their size increase so does their price. Protecting these important devices is a daunting task due to the wide variety of operating conditions. This thesis develops a new protection scheme based on state estimation.The foundation upon which our protection scheme is built is the modeling of the single phase transformer system of equations. The transformer equations are composed of polynomial and differential equations and this system of equations involving the transformer's electrical quantities are modeled into a system of equations such that highest degree of each of the system's equations is quadratic―in a process named Quadratization and then integrated using a technique called Quadratic integration to give a set of algebraic companion equations that can be solved numerically to determine the health of the transformer.
|
180 |
Turn-to-turn fault detection in transformers using negative sequence currentsBabiy, Mariya 21 September 2010
A power transformer is one of the most important and expensive components in any power system. Power transformers can be exposed to a wide variety of abnormal conditions and faults. Internal turn-to-turn faults are the most difficult types of faults to detect within the power transformer. The IEEE Standards documents have revealed that there is no one standard way to protect all power transformers against minor internal faults such as turn-to-turn faults and at the same time to satisfy basic protection requirements: sensitivity, selectivity, and speed.<p>
This thesis presents a new, simple and efficient protection technique which is based on negative sequence currents. Using this protection technique, it is possible to detect minor internal turn-to-turn faults in power transformers. Also, it can differentiate between internal and external faults. The discrimination is achieved by comparing the phase shift between two phasors of total negative sequence current. The new protection technique is being studied via an extensive simulation study using PSCAD®/EMTDC 1 software in a three-phase power system and is also being compared with a traditional differential algorithm.<p>
Relay performance under different numbers of shorted turns of the power transformer, different connections of the transformer, different values of the fault resistances, and different values of the system parameters was investigated. The results indicate that the new technique can provide a fast and sensitive approach for identifying minor internal turn-to-turn faults in power transformers.
|
Page generated in 0.0679 seconds