• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum electron transport in models of nanoparticles using matrix algebra and renormalization group methods

Solomon, Lazarus 01 May 2010 (has links)
A general expression for quantum transmission of non-interacting spinless electrons through models of a fully connected network of sites that can be regarded as a nanoparticle is obtained using matrix algebra. This matrix algebra method leads to the same results given by the Green’s function method without requiring the mathematical sophistication as required by the later. The model of the nanoparticle in this study comprises a single linear array of atoms that profile the input and output leads connected to a fully connected blob of atoms. A simple tight-binding Hamiltonian motivates the quantum transmission in the discrete lattice system. If there are n atoms in the nanoparticle, the methodology requires the inverse of a n × n matrix. The solution is obtained analytically for different cases: a single atom in the nanoparticle, a single dangle atom, n fully connected atoms in a meanield type cluster with symmetric input and output connections, and the most general case where the n fully connected atoms can be connected arbitrarily to the input and output leads. A numerical solution is also provided for the case where the intra-bonds among the atoms in the nanoparticle are varied (a case with notully connected atoms). The expression for the transmission coefficient thus obtained using the matrix method is compared with the transmission coefficients derived using the real space Renormalization Group method and the Green’s function method.
2

Selection Of Light Source And Implementation Of Data Acquisition System Of An Optical Experimental Setup

Reyhanioglu, Erinc 01 January 2004 (has links) (PDF)
The construction of an optical experimental setup is the objective, to measure transmission coefficient of optical components used in plasma investigations. Thus, proper light source either with continuous or line radiation spectrum should be used. In addition, the detectors&rsquo / output signal is recorded on a PC based data recorder after being digitized by an analog to digital converter card.
3

NDT Applications for the Assessment of Asphalt Pavements, Plate Thickness, and Steel-Grout Coupling

Wu, Yen Chieh January 2012 (has links)
Nondestructive testing (NDT) uses different wave propagation modes to evaluate the internal structure of materials, revealing internal damage such as corrosion and fracturing that cannot be detected by traditional methods. Civil infrastructures are considered high priority assets in Ontario and Canada because of their value, high consequence of failure, and the continual influence of aging effects. Unexpected failure of infrastructure not only costs more than planned replacements but also results in increased safety risks. The in-situ condition assessment of civil infrastructure is critical for the successful implementation of maintenance and safety programs. Therefore, reliable nondestructive methods of inspection are required for the implementation of economical and efficient maintenance and asset management programs. Continuing technological developments in data collection, acquisition equipment, and data processing techniques have provided useful applications of nondestructive methods in many engineering fields. Among the many applications, this research study examines three applications of nondestructive testing in civil engineering: (1) condition assessment of construction joints in asphalt pavements, (2) average thickness evaluation of steel pipes, and (3) void and debonding detection in grouted steel tanks. The study on asphalt focuses on the improvement of the coupling system between the transducers and the asphalt surface, and the development of a new data processing technique to reduce user input and increase the reliability of the condition assessment of longitudinal joints. The current wavelet transmission coefficient (WTC) method requires user input, making the automatic data processing difficult. In the WTC method, the coupling between the transducers and the asphalt surface requires the use of epoxy and aluminum plates. This procedure is not practical for testing in-service roads. A new coupling mechanism using polyurethane foam to provide a spring action on the transducers and calibrated weights to generate a compression force was developed and showed good results, reducing the testing time by up to 50%. A new and robust data analysis methodology, called instantaneous transmission coefficient (ITC), is proposed based on measured instantaneous frequencies and damping ratios. The main advantage of the ITC procedure is that it can be performed automatically, reducing user input. A laboratory scale asphalt slab is used to evaluate the new methodology. Results show good agreement between the WTC and ITC measurements for both jointed and joint-free areas. The second study investigates the feasibility of the multichannel analysis of surface waves (MASW) technique for the evaluation of the average wall thickness of steel pipes. Electromagnetic NDT methods, such as the eddy current and the remote field testing, are common tools for thickness measurement of conductive materials. However, these methods give only localized results where measurements are made, making the process time consuming and inaccurate for assessing the full cross-sectional area of the pipe. Lamb waves have been used previously in the evaluation of steel pipes; however, the existing techniques require prior calibration to a theoretical wave mode, and their accuracy decreases with the length of the pipe evaluated due to wave attenuation effects. Preliminary results show the capability of the MASW test for providing reliable thickness information. The measured dispersion curves include information of fundamental modes and the higher modes, providing an improved characterization of the medium. Thicknesses between 3.2 mm and 12.7 mm are tested with an error of less than 2%. The third study explores the detection of voids in a steel tank filled with lightweight grout. A joint analysis of surface waves and Lamb waves is used for void detection and the identification of debonding conditions in a laboratory scale model of a steel tank filled with grout. Different configurations of the MASW method are conducted using an instrumented hammer (large wavelengths, 10 cm < λ < 25 cm) and a 50 kHz piezoelectric transmitter (small wavelengths, 5 cm < λ < 9 cm) as sources. The attenuation coefficient computed from the Fourier spectra of the measured signals indicates that the presence of a void has an effect on the propagation of the wave. The comparison between experimental and theoretical dispersion curves show that mainly Lamb waves are generated during the testing of the steel tank; thus, detecting the debonding conditions between the steel plate and the grout. Lamb modes are used successfully for detecting the presence of a void beneath the steel wall. The laboratory measurements are effective in the detection of the void, showing amplitudes up to 50% higher, likely because the deformation of the wall is attenuated by the grout.
4

NDT Applications for the Assessment of Asphalt Pavements, Plate Thickness, and Steel-Grout Coupling

Wu, Yen Chieh January 2012 (has links)
Nondestructive testing (NDT) uses different wave propagation modes to evaluate the internal structure of materials, revealing internal damage such as corrosion and fracturing that cannot be detected by traditional methods. Civil infrastructures are considered high priority assets in Ontario and Canada because of their value, high consequence of failure, and the continual influence of aging effects. Unexpected failure of infrastructure not only costs more than planned replacements but also results in increased safety risks. The in-situ condition assessment of civil infrastructure is critical for the successful implementation of maintenance and safety programs. Therefore, reliable nondestructive methods of inspection are required for the implementation of economical and efficient maintenance and asset management programs. Continuing technological developments in data collection, acquisition equipment, and data processing techniques have provided useful applications of nondestructive methods in many engineering fields. Among the many applications, this research study examines three applications of nondestructive testing in civil engineering: (1) condition assessment of construction joints in asphalt pavements, (2) average thickness evaluation of steel pipes, and (3) void and debonding detection in grouted steel tanks. The study on asphalt focuses on the improvement of the coupling system between the transducers and the asphalt surface, and the development of a new data processing technique to reduce user input and increase the reliability of the condition assessment of longitudinal joints. The current wavelet transmission coefficient (WTC) method requires user input, making the automatic data processing difficult. In the WTC method, the coupling between the transducers and the asphalt surface requires the use of epoxy and aluminum plates. This procedure is not practical for testing in-service roads. A new coupling mechanism using polyurethane foam to provide a spring action on the transducers and calibrated weights to generate a compression force was developed and showed good results, reducing the testing time by up to 50%. A new and robust data analysis methodology, called instantaneous transmission coefficient (ITC), is proposed based on measured instantaneous frequencies and damping ratios. The main advantage of the ITC procedure is that it can be performed automatically, reducing user input. A laboratory scale asphalt slab is used to evaluate the new methodology. Results show good agreement between the WTC and ITC measurements for both jointed and joint-free areas. The second study investigates the feasibility of the multichannel analysis of surface waves (MASW) technique for the evaluation of the average wall thickness of steel pipes. Electromagnetic NDT methods, such as the eddy current and the remote field testing, are common tools for thickness measurement of conductive materials. However, these methods give only localized results where measurements are made, making the process time consuming and inaccurate for assessing the full cross-sectional area of the pipe. Lamb waves have been used previously in the evaluation of steel pipes; however, the existing techniques require prior calibration to a theoretical wave mode, and their accuracy decreases with the length of the pipe evaluated due to wave attenuation effects. Preliminary results show the capability of the MASW test for providing reliable thickness information. The measured dispersion curves include information of fundamental modes and the higher modes, providing an improved characterization of the medium. Thicknesses between 3.2 mm and 12.7 mm are tested with an error of less than 2%. The third study explores the detection of voids in a steel tank filled with lightweight grout. A joint analysis of surface waves and Lamb waves is used for void detection and the identification of debonding conditions in a laboratory scale model of a steel tank filled with grout. Different configurations of the MASW method are conducted using an instrumented hammer (large wavelengths, 10 cm < λ < 25 cm) and a 50 kHz piezoelectric transmitter (small wavelengths, 5 cm < λ < 9 cm) as sources. The attenuation coefficient computed from the Fourier spectra of the measured signals indicates that the presence of a void has an effect on the propagation of the wave. The comparison between experimental and theoretical dispersion curves show that mainly Lamb waves are generated during the testing of the steel tank; thus, detecting the debonding conditions between the steel plate and the grout. Lamb modes are used successfully for detecting the presence of a void beneath the steel wall. The laboratory measurements are effective in the detection of the void, showing amplitudes up to 50% higher, likely because the deformation of the wall is attenuated by the grout.
5

Design, Assembly And Calibration Of An Experimental Setup For Various Optical Measurements

Uzgel, Evren 01 January 2004 (has links) (PDF)
The experimental setup which consisted of the Jarrell-Ash Ebert type scanning monochromator, the Hamamatsu Si PIN Photodiode, a PC connected ADC card and a Tungstenstriplamp operated at different temperatures was assembled. The different parts needing calibration were calibrated with spectral response calibration techniques suitable for our purposes and connected to the experimental setup in a proper way. Spectral response calibrations and transmission measurements in the range 450-800 nm were carried out.
6

Phonon wave-packet dynamics at modelled grain boundaries / モデル粒界におけるフォノンの波束ダイナミクス / # ja-Kana

Kuijpers, Stephan Robert 25 September 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21369号 / 工博第4528号 / 新制||工||1705(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 中村 裕之, 教授 安田 秀幸 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
7

Generalized Concept and MATLAB Code for Modeling and Analyzing Wideband 90◦ Stub-Loaded Phase Shifters with Simulation and Experimental Verifications

Alnahwi, F.M., Al-Yasir, Yasir I.A., See, C.H., Abdullah, A.S., Abd-Alhameed, Raed 09 September 2023 (has links)
Yes / In the design of phase shifters, the modeling equations are too complicated and require some approximations to be derived correctly by hand. In response to this problem, this paper presents a generalized concept, algorithm, and MATLAB code that provide the exact modeling equations of the transmission parameters and the scattering parameters of any 90^o wideband stub-loaded phase shifter. The proposed code gives the modeling equations in term of variables for any number of stubs and characteristic impedance value by utilizing the symbol-based analysis of the MATLAB. It also illustrates the results as a function of normalized frequency relative to the center frequency f_o, and can be and can be tailored to any user-defined frequency range. As a matter of comparison, a three-stub wideband 90^o stub-loaded phase shifter is simulated using CST Microwave Studio and experimentally fabricated on Rogers RT5880 dielectric substrate with dimensions of 30×40×0.8 〖mm〗^3. The comparison reveals the accuracy of the proposed computerized modeling with -10 dB impedance bandwidth equal to 90% (0.55 fo-1.45 fo), (90∓5 degrees ) phase difference bandwidth equal to 100% (0.5 fo-1.5 fo), and negligible insertion loss. The novelty of this work is that the proposed code provides the exact modeling equations of the stub-loaded phase shifter for any number of stubs regardless the complexity of the mathematical derivations.
8

Dynamical simulation of molecular scale systems : methods and applications

Lu, Chun-Yaung 07 February 2011 (has links)
Rare-event phenomena are ubiquitous in nature. We propose a new strategy, kappa-dynamics, to model rare event dynamics. In this methodology we only assume that the important rare-event dynamics obey first-order kinetics. Exact rates are not required in the calculation and the reaction path is determined on the fly. kappa-dynamics is highly parallelizable and can be implemented on computer clusters and distributed machines. Theoretical derivations and several examples of atomic scale dynamics are presented. With single-molecule (SM) techniques, the individual molecular process can be resolved without being averaged over the ensemble. However, factors such as apparatus stability, background level, and data quality will limit the amount of information being collected. We found that the correlation function calculated from the finite-size SM rotational diffusion trajectory will deviate from its true value. Therefore, care must be taken not to interpret the difference as the evidence of new dynamics occurred in the system. We also proposed an algorithm of single fluorophore orientation reconstruction which converts three measured intensities {I₀,I₄₅,I₉₀} to the dipole orientation. Fluctuations in the detected signals caused by the shot noise result in a different prediction from the true orientation. This difference should not be interpreted as the evidence of the nonisotropic rotational motion. Catalytic reactions are also governed by the rare-events. Studying the dynamics of catalytic processes is an important subject since the more we learn, the more we can improve current catalysts. Fuel cells have become a promising energy source in the past decade. The key to make a high performance cell while keeping the price low is the choice of a suitable catalyst at the electrodes. Density functional theory calculations are carried out to study the role of geometric relaxation in the oxygen-reduction reaction for nanoparticle of various transition metals. Our calculations of Pt nanoparticles show that the structural deformation induced by atomic oxygen binding can energetically stabilize the oxidized states and thus reduces the catalytic activity. The catalytic performance can be improved by making alloys with less deformable metals. / text
9

Tunelamento de estados na superfície de isolantes topológicos

Soto, Alexander Perez January 2015 (has links)
Orientador: Prof. Dr. Marcos Roberto da Silva Tavares / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2015.
10

Antenna Shape Synthesis Using Characteristic Mode Concepts

Ethier, Jonathan L. T. 26 October 2012 (has links)
Characteristic modes (CMs) provide deep insight into the electromagnetic behaviour of any arbitrarily shaped conducting structure because the CMs are unique to the geometry of the object. We exploit this very fact by predicting a perhaps surprising number of important antenna metrics such as resonance frequency, radiation efficiency and antenna Q (bandwidth) without needing to specify a feeding location. In doing so, it is possible to define a collection of objective functions that can be used in an optimizer to shape-synthesize antennas without needing to define a feed location a priori. We denote this novel form of optimization “feedless” or “excitation-free” antenna shape synthesis. Fundamentally, we are allowing the electromagnetics to dictate how the antenna synthesis should proceed and are in no way imposing the physical constraints enforced by fixed feeding structures. This optimization technique is broadly applied to three major areas of antenna research: electrically small antennas, multi-band antennas and reflectarrays. Thus, the scope of applicability ranges from small antennas, to intermediate sizes and concludes with electrically large antenna designs, which is a testament to the broad applicability of characteristic mode theory. Another advantage of feedless electromagnetic shape synthesis is the ability to synthesize antennas whose desirable properties approach the fundamental limits imposed by electromagnetics. As an additional benefit, the feedless optimization technique is shown to have greater computational efficiency than traditional antenna optimization techniques.

Page generated in 0.0986 seconds