• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 19
  • 10
  • 5
  • 4
  • 2
  • Tagged with
  • 170
  • 66
  • 45
  • 32
  • 32
  • 31
  • 30
  • 26
  • 25
  • 24
  • 24
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Development of a data reduction method for a high frequency angle probe

Popernack, Thomas G., Jr. 20 November 2012 (has links)
A data reduction method has been developed and tested for a high frequency angle probe. The angle probe is designed for unsteady aerodynamic measurements in transonic cryogenic wind tunnels. The probe measures time-resolved total pressure, static pressure, angle of attack, and yaw angle from readings of four pressure transducers. The unique feature of this probe, as compared to a conventional multi-hole directional probe, is that the four high frequency response silicon pressure transducers are mounted flush on the probe tip. The data reduction method is basically an interpolation routine of calibration curves. The calibration curves consist of experimentally determined non-dimensional flow coefficients. Two experiments were conducted to test the probe and the data reduction method. The first experiment tested the angle probe in a Karman vortex street shed from a cylinder. In the second experiment, the angle probe was placed in an open air jet with an exit Mach number of 0.42. Plots of the time-resolved measurements and the Fast Fourier Transform analysis were made for each test. / Master of Science
112

Effects of stationary wake on turbine blade heat transfer in a transonic cascade

Hale, Jamie Harold 22 August 2008 (has links)
The effects of a wake generated by a stationary upstream strut on surface heat transfer to turbine blades were measured experimentally. Time-resolved and unsteady heat flux measurements were made with Heat Flux Microsensors (HFM) at three positions on the suction surface and one position on the pressure surface of a turbine blade. The experiments were conducted on a stationary cascade of blades for heated runs at transonic conditions Methods for determining the adiabatic wall temperature and heat transfer coefficient are presented and the results are compared to computer predictions for these blades. Heat transfer measurements were taken with new HFM-6 insert gages. A strong influence on the heat transfer coefficient was seen from the relative position of the strut with respect to the leading edge of the test blades. As the strut approached the leading edge of the blade the heat transfer increased by 15% at gage location 2 on the suction surface. The largest increase in .the heat transfer coefficient was seen on the pressure surface. Results at this location show a 24% increase in the overall heat transfer coefficient for one of the strut locations. The values obtained for the heat transfer coefficients for the no strut case did not compare well with computer predictions. The results did support the experimental results of other researchers, however. The fast time response of the HFM illustrated graphically an increase in the frequency energy between the 0-10 kHz range when the strut was located near the leading edge of the instrumented blade. The heat flux turbulence intensity (Tuq) was defined as another physical quantity important to turbine blade heat transfer, but no conclusions could be drawn from the results as to how this value compares to the turbulence intensity. / Master of Science
113

Measurements of pressure and thermal wakes in a transonic turbine cascade

Mezynski, Alexis 11 June 2009 (has links)
The effects of freestream turbulence on the total pressure and total temperature in the wake of a cooled transonic turbine cascade with heated flow are presented in this thesis. The experiment was conducted in the Virginia Tech Cascade Wind Tunnel. A dual hot wire aspirating probe was used to make high frequency, unsteady total pressure and temperature measurements. The probe design was modified to be used in a high temperature environment. The flow was heated to temperatures exceeding 140°C and the turbine blades were actively cooled using gaseous nitrogen to maintain a gas to blade temperature ratio between 1.3 and 1.4. A turbulence screen was used to change the freestream turbulence from 3.3% to 7.5%. Mean and turbulent total pressure and temperature quantities are presented. The higher freestream turbulence resulted in lower total pressure and total temperature turbulence intensities in the wakes of the turbine blades. The freestream turbulence level had no measurable effect on the blade losses. / Master of Science
114

Fluid flow and heat transfer in transonic turbine cascades

Janakiraman, S. V. 11 June 2009 (has links)
The aerodynamic and thermodynamic performance of an aircraft gas turbine directly affects the fuel consumption of the engine and the life of the turbine components. Hence, it is important to be able to understand and predict the fluid flow and heat transfer in turbine blades to enable the modifications and improvements in the design process. The use of numerical experiments for the above purposes is becoming increasingly common. The present thesis is involved with the development of a flow solver for turbine flow and heat transfer computations. A 3-D Navier-Stokes code, the Moore Elliptic Flow Program (MEFP) is used to calculate steady flow and heat transfer in turbine rotor cascades. Successful calculations were performed on two different rotor profiles using a one-equation q-L transitional turbulence model. A series of programs was developed for the post-processing of the output from the flow solver. The calculations revealed details of the flow including boundary layer development, trailing edge shocks, flow transition and stagnation and peak heat transfer rates. The calculated pressure distributions, losses, transition ranges, boundary layer parameters and peak heat transfer rates to the blade are compared with the available experimental data. The comparisons indicate that the q-L transitional turbulence model is successful in predicting flows in transonic turbine blade rows. The results also indicate that the calculated loss levels are independent of the gridding used while the heat transfer rate predictions improve with finer grids. / Master of Science
115

The Effect of Combustor Exit to Nozzle Guide Vane Platform Misalignment on Heat Transfer over an Axisymmetric Endwall at Transonic Conditions

Mayo, David Earl Jr. 01 July 2016 (has links)
This paper presents details of an experimental and computational investigation on the effect of misalignment between the combustor exit and nozzle guide vane endwall on the heat transfer distribution across an axisymmetric converging endwall. The axisymmetric converging endwall investigated was representative of that found on the shroud side of a first stage turbine nozzle section. The experiment was conducted at a nominal exit M of 0.85 and exit Re 1.5 x 10⁶ with an inlet turbulence intensity of 16%. The experiment was conducted in a blowdown transonic linear cascade wind tunnel. Two different inlet configurations were investigated. The first configuration, Case I, was representative of a combustor exit aligned to the nozzle platform, with a gap located at the interface of the tow components. The second configuration, Case II, the endwall platform was offset in the span-wise direction to create a backward facing step at the inlet. This step is representative of a misalignment between the combustor exit and the NGV platform. An infrared camera was used to capture the temperature history on the endwall, from which the endwall heat transfer distribution was determined. A numerical study was also conducted by solving RANS equations using ANSYS Fluent v.15. The numerical results provided insight into the passage flow field which explained the observed heat transfer characteristics. Case I showed the typical characteristics of transonic vane cascade flow, such as the separation line, saddle point, and horseshoe vortices. The presence of a gap at the combustor-nozzle interface facilitated the formation of a separated flow which propagated through the passage. This flow feature caused the passage vortex reattach to the SS vane at 0.44 x/C. The addition of the platform misalignment in Case II caused the flow reattachment region to occur near the vane LE plane. The separated flow which formed at the inlet step, merged with the recirculation region on the endwall platform, forming two counter-rotating auxiliary vortices. These vortices significantly delayed migration of the passage vortex, causing it to reattach on the SS vane at 0.85 x/C. These two flow features also had a significant effect on the endwall heat transfer characteristics. The heat transfer levels on the endwall platform, from -0.50 to +0.50 Cx relative to the vane LE, had an average increase of ~40%. However, downstream of the vane mid-passage, the heat transfer levels showed no appreciable heat transfer augmentation due to flow acceleration through the passage throat. / Master of Science
116

Development of a transonic turbine cascade facility

Zaccaria, Michael A. January 1988 (has links)
This thesis describes the design and initial testing of a transonic turbine cascade facility. It is specifically concerned with the best way to obtain flow periodicity and repeatability through the cascade by the use of tailboards at the cascade exit. The problem of how to achieve flow periodicity and repeatability has not been completely resolved. An examination of the literature available on transonic turbine cascade testing indicates some researchers use no tailboards, some use a solid tailboard, and still others use a porous tailboard. In this thesis, the flow through the turbine cascade is tested for three different cascade exit configurations; no tailboard, a solid tailboard, and a porous tailboard. The cascade is also tested with the tailboard at different angles, to see what effect the angle of the tailboard has on the flow through the cascade. The data acquisition and flow visualization systems are discussed and some preliminary results are given. / Master of Science
117

Numerical Loss Prediction of high Pressure Steam Turbine airfoils

Nunes, Bonaventure R. 24 October 2013 (has links)
Steam turbines are widely used in various industrial applications, primarily for power extraction. However, deviation for operating design conditions is a frequent occurrence for such machines, and therefore, understanding their performance at off design conditions is critical to ensure that the needs of the power demanding systems are met as well as ensuring safe operation of the steam turbines. In this thesis, the aerodynamic performance of three different turbine airfoil sections ( baseline, mid radius and tip profile) as a function of angle of incidence and exit Mach numbers, is numerically computed at 0.3 axial chords downstream of the trailing edge. It was found that the average loss coefficient was low, owing to the fact that the flow over the airfoils was well behaved. The loss coefficient also showed a slight decrease with exit Mach number for all three profiles. The mid radius and tip profiles showed near identical performance due to similarity in their geometries. It was also found out that the baseline profile showed a trend of substantial increase in losses at positive incidences, due to the development of an adverse pressure zone on the blade suction side surface. The mid radius profile showed high insensitivity to angle of incidence as well as low exit flow angle deviation in comparison to the baseline blade. / Master of Science
118

Aerodynamic performance of a transonic turbine blade passage in presence of upstream slot and mateface gap with endwall contouring

Jain, Sakshi 27 January 2014 (has links)
The present study investigates mixed out aerodynamic loss coefficient measurements for a high turning, contoured endwall passage under transonic operating conditions in presence of upstream purge slot and mateface gap. The upstream purge slot represents the gap between stator-rotor interface and the mateface gap simulates the assembly feature between adjacent airfoils in an actual high pressure turbine stage. While the performance of the mateface and upstream slot has been studied for lower Mach number, no studies exist in literature for transonic flow conditions. Experiments were performed at the Virginia Tech's linear, transonic blow down cascade facility. Measurements were carried out at design conditions (isentropic exit Mach number of 0.87, design incidence) without and with coolant blowing. Upstream leakage flow of 1.0% coolant to mainstream mass flow ratio (MFR) was considered with the presence of mateface gap. There was no coolant blowing through the mateface gap itself. Cascade exit pressure measurements were carried out using a 5-hole probe traverse at a plane 1.0Cax downstream of the trailing edge for a planar geometry and two contoured endwalls. Spanwise measurements were performed to complete the entire 2D loss plane from endwall to midspan, which were used to plot pitchwise averaged losses for different span locations and loss contours for the passage. Results reveal significant reduction in aerodynamic losses using the contoured endwalls due to the modification of flow physics compared to a non contoured planar endwall. / Master of Science
119

Interference Drag Due to Engine Nacelle Location for a Single-Aisle, Transonic Aircraft

Blaesser, Nathaniel James 15 January 2020 (has links)
This investigation sought first to determine the feasibility of generating a surrogate model of the interference drag between nacelles and wing-fuselage systems suitable for the inclusion in a multidisciplinary design optimization (MDO) framework. The target aircraft was a single-aisle, transonic aircraft with a freestream Mach number of 0.8 at 35,000 feet and a design lift coefficient of 0.5. Using an MDO framework is necessary for placing the nacelle because of the competing objectives of the disciplines involved in aircraft design including structures, acoustics, and aerodynamics. A secondary goal was to determine what tools are necessary for accurately capturing interference drag effects on the system. This research used both Euler computational fluid dynamics (CFD) with a coupled viscous drag estimation tool and Reynolds Averaged Navier-Stokes (RANS) CFD to estimate the system drag. The initial trade space exploration that varied the nacelle location across a baseline airframe configuration was completed with the Euler solver, and it showed that appreciable overlap between the wing and nacelle led to large increases in interference drag. A follow-on study was conducted with RANS CFD where the wing shape was tailored for each unique nacelle position. In comparing the results of the Euler and the RANS CFD, it was determined that RANS is required to accurately capture the flow features. Euler solvers can create artifacts due to the lack of viscous effects within the model. Wing tailoring is necessary because of the sensitivity of transonic flows to geometric changes and the addition of neighboring components, such as a nacelle. The research showed that for above and aft wing locations, a nacelle can overlap the trailing edge without incurring a drag penalty. Nacelles placed in the conventional location, forward and beneath the wing, displayed low interference drag effects, as the nacelle had a small and local impact on the wing's aerodynamics. Given the high cost of computing a RANS solution with wing tailoring, and the large design space for nacelle locations, building a surrogate model for interference drag was found to be prohibitive at this time. As the cost of computing and mesh generation decreases, collecting the data for building a surrogate model may become tractable. / Doctor of Philosophy / Engine placement on an aircraft is dependent on multiple disciplines. Engine placement affects the noise of the aircraft because the wing can shield or reflect the engine noise. Engine placement impacts the structural loads of an aircraft, with some positions requiring more reinforcement that adds to the cost and weight of the aircraft. Aerodynamically, the engine placement impacts the vehicle's drag. Taken together, the only means of trading the different disciplines' needs is through a multidisciplinary design optimization (MDO) framework. The challenge of MDO frameworks is that they require numerous solutions to effectively explore the trade space. Thus, MDO frameworks employ fast, low-order tools to compute hundreds or thousands of different combinations of features. A common approach to make running MDO analysis feasible is to develop surrogate models of the key considerations. Current aerodynamic drag build-ups for aircraft do not consider the interference drag associated with engine placement. The first goal of this research was to determine the feasibility of generating a surrogate model for inclusion in an MDO framework. In order to collect the data required for the surrogate, appropriate tools to capture the interference drag are required. Building a surrogate requires a large number of samples, thus the aerodynamic solver must be fast, robust, and accurate. An Euler (inviscid) computational fluid dynamics (CFD) was used do explore the engine placement design space to test the feasibility of building the surrogate model. The target aircraft was a single-aisle, transonic aircraft with a freestream Mach number of 0.8, flying at an altitude of 35,000 feet and a design lift coefficient of 0.5. The initial vehicle used a baseline wing, and the engine placement was varied across the wing span and fuselage. The results showed that the conventional location, where the engine is forward and beneath the wing, had the a modestly beneficial interference drag, though positions near the trailing edge and above the wing also showed neutral interference drag. In general, if the engine overlapped the wing, the interference drag increased dramatically. A follow-on study used Reynolds Averaged Navier-Stokes (RANS) CFD to investigate seven engine placements above and aft of the wing. Each of these positions had the wing tailored such that the wing performance would be typical of a good transonic wing. The results showed that with wing tailoring, a moderate amount of overlap between the wing and nacelle results in reduced or neutral interference drag. This is in contrast with the baseline wing results that showed moderate overlap led to large increases in interference drag. The results from this research suggest that building a surrogate model of interference drag for transonic aircraft is not feasible given today's computational resources. In order to accurately model the interference drag, one must use a RANS CFD solver and tailor the wing. These requirements increase the cost of evaluating an engine position such that collecting enough for a surrogate model is prohibitively expensive. As computational speeds increase, and the ability to automate CFD mesh generation becomes less time intensive, the feasibility may increase. Using an Euler solver is insufficient because of the lack of viscous effects in the flow. The lack of a boundary layer leads to artifacts appearing in the flow when the nacelle and wing are in close proximity.
120

Step Misaligned and Film Cooled Nozzle Guide Vanes at Transonic Conditions: Heat Transfer

Luehr, Luke Emerson 16 May 2018 (has links)
This study describes a detailed investigation on the effects that upstream step misalignment and upstream purge film cooling have on the endwall heat transfer for nozzle guide vanes in a land based power generation gas turbine at transonic conditions. Endwall Nusselt Number and adiabatic film cooling effectiveness distributions were experimentally calculated and compared with qualitative data gathered via oil paint flow visualization which also depicts endwall flow physics. Tests were conducted in a transonic linear cascade blowdown facility. Data were gathered at an exit Mach number of 0.85 with a freestream turbulence intensity of 16% at a Re = 1.5 x 106 based on axial chord. Varied upstream purge blowing ratios and a no blowing case were tested for 3 different upstream step geometries, one of which was the baseline (no step). The other two geometries are a backward step geometry and a forward step geometry, which comprised of a span-wise upstream step of +4.86% span and -4.86% span respectively. Experimentation shows that the addition of upstream purge film cooling increases the Nusselt Number at injection upwards of 50% but lowers it in the throat of the passage by approximately 20%. The addition of a backward facing step induces more turbulent mixing between the coolant and mainstream flows, thus reducing film effectiveness coverage and increasing Nusselt number by nearly 40% in the passage throat. In contrast, the presence of a forward step creates a more stable boundary layer for the coolant flow, thus aiding to help keep the film attached to the endwall at higher blowing ratios. Increasing the blowing ratio increases film cooling effectiveness and endwall coverage up to a certain point, beyond which, the high momentum of the coolant results in poor cooling performance due to jet liftoff. Near endwall streamlines without purge cooling generated by Li et al. [1] for the same geometries were compared to the experimental data. It was shown that even with the addition of upstream purge cooling, the near endwall streamlines as they moved downstream matched strikingly well with the experimental data. This discovery indicates that while the coolant flow will likely affect the flow streamlines three dimensionally, they are minimally effected by the coolant flow near the endwall as the flow moves downstream. / Master of Science

Page generated in 0.0756 seconds