• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 19
  • 10
  • 5
  • 4
  • 2
  • Tagged with
  • 170
  • 66
  • 45
  • 32
  • 32
  • 31
  • 30
  • 26
  • 25
  • 24
  • 24
  • 21
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A study of swept and unswept normal shock wave/turbulent boundary layer interaction and control by piezoelectric flap actuation

Couldrick, Jonathan Stuart, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2006 (has links)
The interaction of a shock wave with a boundary layer is a classic viscous/inviscid interaction problem that occurs over a wide range of high speed aerodynamic flows. For example, on transonic wings, in supersonic air intakes, in propelling nozzles at offdesign conditions and on deflected controls at supersonic/transonic speeds, to name a few. The transonic interaction takes place at Mach numbers typically between 1.1 and 1.5. On an aerofoil, its existence can cause problems that range from a mild increase in section drag to flow separation and buffeting. In the absence of separation the drag increase is predominantly due to wave drag, caused by a rise in entropy through the interaction. The control of the turbulent interaction as applied to a transonic aerofoil is addressed in this thesis. However, the work can equally be applied to the control of interaction for numerous other occurrences where a shock meets a turbulent boundary layer. It is assumed that, for both swept normal shock and unswept normal shock interactions, as long as the Mach number normal to the shock is the same, then the interaction, and therefore its control, should be the same. Numerous schemes have been suggested to control such interaction. However, they have generally been marred by the drag reduction obtained being negated by the additional drag due to the power requirements, for example the pumping power in the case of mass transfer and the drag of the devices in the case of vortex generators. A system of piezoelectrically controlled flaps is presented for the control of the interaction. The flaps would aeroelastically deflect due to the pressure difference created by the pressure rise across the shock and by piezoelectrically induced strains. The amount of deflection, and hence the mass flow through the plenum chamber, would control the interaction. It is proposed that the flaps will delay separation of the boundary layer whilst reducing wave drag and overcome the disadvantages of previous control methods. Active control can be utilised to optimise the effects of the boundary layer shock wave interaction as it would allow the ability to control the position of the control region around the original shock position, mass transfer rate and distribution. A number of design options were considered for the integration of the piezoelectric ceramic into the flap structure. These included the use of unimorphs, bimorphs and polymorphs, with the latter capable of being directly employed as the flap. Unimorphs, with an aluminium substrate, produce less deflection than bimorphs and multimorphs. However, they can withstand and overcome the pressure loads associated with SBLI control. For the current experiments, it was found that near optimal control of the swept and unswept shock wave boundary layer interactions was attained with flap deflections between 1mm and 3mm. However, to obtain the deflection required for optimal performance in a full scale situation, a more powerful piezoelectric actuator material is required than currently available. A theoretical model is developed to predict the effect of unimorph flap deflection on the displacement thickness growth angles, the leading shock angle and the triple point height. It is shown that optimal deflection for SBLI control is a trade-off between reducing the total pressure losses, which is implied with increasing the triple point height, and minimising the frictional losses.
162

A study of swept and unswept normal shock wave/turbulent boundary layer interaction and control by piezoelectric flap actuation

Couldrick, Jonathan Stuart, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2006 (has links)
The interaction of a shock wave with a boundary layer is a classic viscous/inviscid interaction problem that occurs over a wide range of high speed aerodynamic flows. For example, on transonic wings, in supersonic air intakes, in propelling nozzles at offdesign conditions and on deflected controls at supersonic/transonic speeds, to name a few. The transonic interaction takes place at Mach numbers typically between 1.1 and 1.5. On an aerofoil, its existence can cause problems that range from a mild increase in section drag to flow separation and buffeting. In the absence of separation the drag increase is predominantly due to wave drag, caused by a rise in entropy through the interaction. The control of the turbulent interaction as applied to a transonic aerofoil is addressed in this thesis. However, the work can equally be applied to the control of interaction for numerous other occurrences where a shock meets a turbulent boundary layer. It is assumed that, for both swept normal shock and unswept normal shock interactions, as long as the Mach number normal to the shock is the same, then the interaction, and therefore its control, should be the same. Numerous schemes have been suggested to control such interaction. However, they have generally been marred by the drag reduction obtained being negated by the additional drag due to the power requirements, for example the pumping power in the case of mass transfer and the drag of the devices in the case of vortex generators. A system of piezoelectrically controlled flaps is presented for the control of the interaction. The flaps would aeroelastically deflect due to the pressure difference created by the pressure rise across the shock and by piezoelectrically induced strains. The amount of deflection, and hence the mass flow through the plenum chamber, would control the interaction. It is proposed that the flaps will delay separation of the boundary layer whilst reducing wave drag and overcome the disadvantages of previous control methods. Active control can be utilised to optimise the effects of the boundary layer shock wave interaction as it would allow the ability to control the position of the control region around the original shock position, mass transfer rate and distribution. A number of design options were considered for the integration of the piezoelectric ceramic into the flap structure. These included the use of unimorphs, bimorphs and polymorphs, with the latter capable of being directly employed as the flap. Unimorphs, with an aluminium substrate, produce less deflection than bimorphs and multimorphs. However, they can withstand and overcome the pressure loads associated with SBLI control. For the current experiments, it was found that near optimal control of the swept and unswept shock wave boundary layer interactions was attained with flap deflections between 1mm and 3mm. However, to obtain the deflection required for optimal performance in a full scale situation, a more powerful piezoelectric actuator material is required than currently available. A theoretical model is developed to predict the effect of unimorph flap deflection on the displacement thickness growth angles, the leading shock angle and the triple point height. It is shown that optimal deflection for SBLI control is a trade-off between reducing the total pressure losses, which is implied with increasing the triple point height, and minimising the frictional losses.
163

Physique et modélisation d’interactions instationnaires onde de choc/couche limite autour de profils d’aile transsoniques par simulation numérique / Physics and modeling of unsteady shock wave/boundary layer interactions over transonic airfoils by numerical simulation

Grossi, Fernando 05 May 2014 (has links)
L’interaction onde de choc/couche limite en écoulement transsonique autour de profils aérodynamiques est étudiée numériquement utilisant différentes classes de modélisation de la turbulence. Les approches utilisées sont celles de modèles URANS et de méthodes hybrides RANS-LES. L’emploi d’une correction de compressibilité pour les fermetures à une équation est aussi évalué. Premièrement, la séparation intermittente induite par le choc sur un profil supercritique en conditions d’incidence proches de l’angle critique d’apparition du tremblement est analysée. Suite à des simulations URANS, la modélisation statistique la mieux adaptée est étudiée et utilisée dans l’approche DDES (Delayed Detached-Eddy Simulation). L’étude de la topologie de l’écoulement, des pressions pariétales et champs de vitesse statistiques montrent que les principales caractéristiques de l’oscillation auto-entretenue du choc sont capturées par les simulations. De plus, la DDES prédit des fluctuations secondaires de l’écoulement qui n’apparaissent pas en URANS. L’étude de l’interface instationnaire RANS-LES montre que la DDES évite le MSD (modeled stress depletion) pour les phases de l’écoulement attaché ou séparé. Le problème de la ‘zone grise’ et de son influence sur les résultats est considéré. Les conclusions de l’étude sur le profil supercritique est ensuite appliquées à l’étude numérique d’un profil transsonique laminaire. Dans ce contexte, l’effet de la position de la transition de la couche limite sur les caractéristiques de deux régimes d’interaction choc/couche limite sélectionnés est étudié. En conditions de tremblement, les simulations montrent une forte influence du point de transition sur l’amplitude du mouvement du choc et sur l’instationnarité globale de l’écoulement. / Shock wave/boundary layer interactions arising in the transonic flow over airfoils are studied numerically using different levels of turbulence modeling. The simulations employ standard URANS models suitable for aerodynamics and hybrid RANS-LES methods. The use of a compressibility correction for one-equation closures is also considered. First, the intermittent shock-induced separation occurring over a supercritical airfoil at an angle of attack close to the buffet onset boundary is investigated. After a set of URANS computations, a scale-resolving simulation is performed using the best statistical approach in the context of a Delayed Detached-Eddy Simulation (DDES). The analysis of the flow topology and of the statistical wall-pressure distributions and velocity fields show that the main features of the self-sustained shock-wave oscillation are predicted by the simulations. The DDES also captures secondary flow fluctuations which are not predicted by URANS. An examination of the unsteady RANS-LES interface shows that the DDES successfully prevents modeled-stress depletion whether the flow is attached or separated. The gray area issue and its impact on the results are also addressed. The conclusions from the supercritical airfoil simulations are then applied to the numerical study of a laminar transonic profile. Following a preliminary characterization of the airfoil aerodynamics, the effect of the boundary layer transition location on the properties of two selected shock wave/boundary layer interaction regimes is assessed. In transonic buffet conditions, the simulations indicate a strong dependence of the shock-wave motion amplitude and of the global flow unsteadiness on the tripping location.
164

External Heat Transfer Coefficient Predictions on a Transonic Turbine Nozzle Guide Vane Using Computational Fluid Dynamics

Enico, Daniel January 2021 (has links)
The high turbine inlet temperature of modern gas turbines poses a challenge to the material used in the turbine blading of the primary stages. Mechanical failure mechanisms are more pronounced at these high temperatures, setting the lifetime of the blade. It is therefore crucial to obtain accurate local metal temperature predictions of the turbine blade. Accurately predicting the external heat transfer coefficient (HTC) distribution of the blade is therefore of uttermost importance. At present time, Siemens Energy uses the boundary layer code TEXSTAN for this purpose. The limitations coupled to such codes however make them less applicable for the complex flow physics involved in the hot gas path of turbine blading. The thesis therefore aims at introducing CFD for calculating the external HTC. This includes conducting an extensive literature study to find and validate a suitable methodology. The literature study was centered around RANS modeling, reviewing how the calculation of the HTC has evolved and the performance of some common turbulence and transition models. From the literature study, the SST k − ω model in conjunction with the γ − Reθ transition model, the v2 − f model and the Lag EB k − ε model were chosen for the investigation of a suitable methodology. The validation of the methodology was based on the extensively studied LS89 vane linear cascade of the von Karman Institute. In total 13 test cases of the cascade were chosen to represent a wide range of flow conditions. Both a periodic model and a model of the entire LS89 cascade were tested but there were great uncertainties whether or not the correct flow conditions were achieved with the model of the entire cascade. It was therefore abandoned and a periodic model was used instead. The decay of turbulence intensity is not known in the LS89 cascade. This made the case difficult to model since the turbulence boundary conditions then were incomplete. Two approaches were attempted to handle this deficiency, where one was ultimately found invalid. It was recognized that the Steelant-Dick postulation could be used in order to find a turbulent length scale which when specified at the inlet, lead to fairly good agreement with data of the HTC. The validation showed that the SST γ − Reθ model performs relatively well on the suction side and in transition onset predictions but worse on the pressure side for certain flow conditions. The v2 − f model performed better on the pressure side and on a small portion of the suction side. Literature emphasized the importance of obtaining proper turbulence characteristics around the vane for accurate HTC-predictions. It was found that the results of the validation step could be closely coupled to this statement and that further work is needed regarding this. Further research must also be done on the Steelant-Dick postulation to validate it as a reliable method in prescribing the inlet length scale.
165

Sweeping Jet Film Cooling

Hossain, Mohammad Arif 21 September 2020 (has links)
No description available.
166

Heat Transfer and Film Cooling Performance on a Transonic Converging Nozzle Guide Vane Endwall With Purge Jet Cooling and Dual Cavity Slashface Leakage

Van Hout, Daniel Richard 06 November 2020 (has links)
The following study presents an experimental and computational investigation on the effects of implementing a dual cavity slashface configuration and varying slashface coolant leakage mass flow rate on the thermal performance for a 1st stage nozzle guide vane axisymmetric converging endwall. An upstream doublet staggered cylindrical hole jet cooling scheme provides additional purged coolant with consistent conditions throughout the investigation. The effects are measured in engine representative transonic mainstream and coolant flow conditions where Mexit = 0.85, Reexit = 1.5 × 106, freestream turbulence intensity of 16%, and a coolant density ratio of 1.95. Four combinations of slashface Fwd and Aft cavity mass flow rate are experimentally analyzed by comparing key convective heat transfer parameters. Data is collected and reduced using a combination of IR thermography and a linear regression technique to map endwall heat transfer performance throughout the passage. A flow visualization study is employed using 100 cSt oil-based paint to gather qualitative insights into the endwall flow field. A complimentary CFD study is carried out to gather additional understanding of the endwall flow ingestion and egression behavior as well as comparing performance against a conventional cavity configuration. Experimental comparisons indicate slashface mass flow rate variations have a minor effect on passage film cooling coverage. Instead, coolant coverage across the passage is primarily driven by upstream purge coolant. However, endwall heat transfer coefficient is reduced as much as 20% in mid-passage areas as leakage flow decreases. This suggests that changes in leakage flow maintains a first order correlation in altering passage aerodynamics that, despite relatively consistent film cooling coverage, also leads to significant changes in net heat flux reduction in the passage. Endwall flow behavior proves to be complex along the gap interface showing signs of ingestion, egression, and tangential flow varying spatially throughout the gap. CFD comparisons suggests that a dual cavity configuration varies the gap static pressure distribution closer to the mainstream pressure throughout the passage in high speed applications compared to a single cavity configuration. The resulting decelerating flow creates a more stable endwall flow profile and favorable coolant environment by reducing boundary layer thinning and shear interaction in near gap endwall tangential flow. / Master of Science / Gas turbines are often exposed to high temperatures as they convert hot, energetic gas streams into mechanical motion. As turbines receive higher temperature gases, their efficiency increases and reduces waste. However, these temperatures can get too hot for turbine parts. To survive these high temperatures, turbine components are often assembled with a gap in between to allow the part to expand and contrast when it heats and cools. Relatively cold air is also fed into the gap to help prevent hot gases from entering. This cold air can also feed into other pathways to flow onto the turbine component's surface and act as an insulating layer to the hot gas and protect the component from overheating. The study presented investigates an assembly gap, referred to as a slashface gap, found in the middle of a vane located immediately after gas combustion with cold air leaking through. One unique aspect of this study is that there are two pathways for cold air, or coolant, to leak through when, typically, there is only one. The slashface gap lies on a wall which the vanes are attached to, referred to as the endwall. Multiple small holes on the endwall in between the combustor and vanes jet out coolant to try and protect the endwall from hot gases. These holes, called jump cooling holes, point out towards the vanes and angled more shallowly so that the holes do not face directly up from the endwall. The holes are angled as they are meant to gracefully spray coolant to cover and insulate the endwall instead of mixing with the hot air above. The experiments found that changing how much coolant is leaked through the slashface has little effect on how much coolant from jump cooling holes covered the endwall. However, smaller slashface leaks better protect the endwall from the hot gas by forcing it to move smoother and give off less heat across the endwall rather than a tumbling like manner. The experiment is modeled on a computer simulation to determine the differences of a slashface gap with the typical one coolant pathway and the coolant dual pathway configuration that is tested in the experiments. This simulation discovered that having two coolant pathways significantly reduces how much hot gas and jump cooling coolant enters and leaves the slashface gap. This makes the surrounding airflow along the endwall travel more smoothly and does not give off as much heat as if a single coolant pathway configuration is used instead.
167

Experimental Aerothermal Performance of Turbofan Bypass Flow Heat Exchangers

Villafañe Roca, Laura 07 January 2014 (has links)
The path to future aero-engines with more efficient engine architectures requires advanced thermal management technologies to handle the demand of refrigeration and lubrication. Oil systems, holding a double function as lubricant and coolant circuits, require supplemental cooling sources to the conventional fuel based cooling systems as the current oil thermal capacity becomes saturated with future engine developments. The present research focuses on air/oil coolers, which geometrical characteristics and location are designed to minimize aerodynamic effects while maximizing the thermal exchange. The heat exchangers composed of parallel fins are integrated at the inner wall of the secondary duct of a turbofan. The analysis of the interaction between the three-dimensional high velocity bypass flow and the heat exchangers is essential to evaluate and optimize the aero-thermodynamic performances, and to provide data for engine modeling. The objectives of this research are the development of engine testing methods alternative to flight testing, and the characterization of the aerothermal behavior of different finned heat exchanger configurations. A new blow-down wind tunnel test facility was specifically designed to replicate the engine bypass flow in the region of the splitter. The annular sector type test section consists on a complex 3D geometry, as a result of three dimensional numerical flow simulations. The flow evolves over the splitter duplicated at real scale, guided by helicoidally shaped lateral walls. The development of measurement techniques for the present application involved the design of instrumentation, testing procedures and data reduction methods. Detailed studies were focused on multi-hole and fine wire thermocouple probes. Two types of test campaigns were performed dedicated to: flow measurements along the test section for different test configurations, i.e. in the absence of heat exchangers and in the presence of different heat exchanger geometries, and heat transfer measurements on the heat exchanger. As a result contours of flow velocity, angular distributions, total and static pressures, temperatures and turbulence intensities, at different bypass duct axial positions, as well as wall pressures along the test section, were obtained. The analysis of the flow development along the test section allowed the understanding of the different flow behaviors for each test configuration. Comparison of flow variables at each measurement plane permitted quantifying and contrasting the different flow disturbances. Detailed analyses of the flow downstream of the heat exchangers were assessed to characterize the flow in the fins¿ wake region. The aerodynamic performance of each heat exchanger configuration was evaluated in terms of non dimensional pressure losses. Fins convective heat transfer characteristics were derived from the infrared fin surface temperature measurements through a new methodology based on inverse heat transfer methods coupled with conductive heat flux models. The experimental characterization permitted to evaluate the cooling capacity of the investigated type of heat exchangers for the design operational conditions. Finally, the thermal efficiency of the heat exchanger at different points of the flight envelope during a typical commercial mission was estimated by extrapolating the convective properties of the flow to flight conditions. / Villafañe Roca, L. (2013). Experimental Aerothermal Performance of Turbofan Bypass Flow Heat Exchangers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34774 / TESIS
168

Physics and modelling of unsteady turbulent flows around aerodynamic and hydrodynamic structures at high Reynold number by numerical simulation / Analyse physique et modélisation d'écoulements turbulents instationnaires autour d'obstacles aérodynamiques et hydrodynamiques à haut nombre de Reynolds par simulation numérique

Szubert, Damien 29 June 2015 (has links)
Les objectifs de cette thèse sont d'étudier les capacité prédictive des méthodes statistiques URANS et hybrides RANS-LES à modéliser des écoulements complexes à haut nombre de Reynolds et de réaliser l'analyse physique de la turbulence et des structures cohérentes en proche paroi. Ces travaux traitent de configurations étudiées dans le cadre des projets européens ATAAC (Advanced Turbulent Simulation for Aerodynamics Application Challenges) et TFAST (Transition Location Effect on Shock Wave Boundary Layer Interaction). Premièrement, l'écoulement décollé autour d’une configuration de cylindre en tandem, positionnés l'un derrière l’autre, est étudiée à un nombre de Reynolds de 166000. Un cas statique, correspondant schématique aux support de train d'atterrissage, est d’abord considéré. L’interaction fluide-structure est ensuite étudiée dans le cas dynamique, dans lequel le cylindre aval possède un degré de liberté en translation dans la direction perpendiculaire à l'écoulement. Une étude paramétrique est menée afin d'identifier les différents régimes d'interaction en fonction des paramètres structuraux. Dans un deuxième temps, la physique du tremblement transsonique est étudiée au moyen d’une analyse temps-fréquence et d’une décomposition orthogonale en modes propres (POD), dans l’intervalle de nombre de Mach 0.70–0.75. Les interactions entre le choc principal, la couche limite décollée par intermittence et les tourbillons se développant dans le sillage, sont analysées. Un forçage stochastique, basée sur une réinjection de turbulence synthétique dans les équations de transport de l’énergie cinétique et du taux de dissipation générée à partir de la reconstruction POD, a été introduit dans l’approche OES (organised-eddy simulation). Cette méthode introduit une modélisation de la turbulence “upscale" agissant comme un mécanisme de blocage par tourbillons capable de prendre en compte les interfaces turbulent/non-turbulent et de couches de cisaillement autour des géométries. Cette méthode améliore grandement la prédiction des forces aérodynamiques et ouvre de nouvelles perspectives quant aux approches de type moyennes d’ensemble pour modéliser les processus cohérents et aléatoires à haut nombre de Reynolds. Enfin, l'interaction onde de choc/couche limite (SWBLI) est traitée, dans le cas d’un choc oblique à nombre de Mach 1.7, contribuant aux études de "design d'ailes laminaires" au niveau européen. Les performances des modèles URANS et hybrides RANS-LES ont été analysées en comparant, avec les résultats expérimentaux, les valeurs intégrales de la couche limite (épaisseurs de déplacement et de quantité de mouvement) et les valeurs à la paroi (coefficient de frottement). Les effets de la transition dans la couche limite sur l’interaction choc/couche limite sont caractérisés. / This thesis aims at analysing the predictive capabilities of statistical URANS and hybrid RANS-LES methods to model complex flows at high Reynolds numbers and carrying out a physical analysis of the near-region turbulence and coherent structures. This study handles configurations included in the European research programmes ATAAC (Advanced Turbulent Simulation for Aerodynamics Application Challenges) and TFAST (Transition Location Effect on Shock Wave Boundary Layer Interaction). First, the detached flow in a configuration of a tandem of cylinders, positionned behind one another, is investigated at Reynolds number 166000. A static case, corresponding to the layout of the support of a landing gear, is initially considered. The fluid-structure interaction is then studied in a dynamic case where the downstream cylinder, situated in the wake of the upstream one, is given one degree of freedom in translation in the crosswise direction. A parametric study of the structural parameters is carried out to identify the various regimes of interaction. Secondly, the physics of the transonic buffet is studied by means of time-frequency analysis and proper orthogonal decomposition (POD), in the Mach number range 0.70–0.75. The interactions between the main shock wave, the alternately detached boundary layer and the vortices developing in the wake are analysed. A stochastic forcing, based on reinjection of synthetic turbulence in the transport equations of kinetic energy and dissipation rate by using POD reconstruction, has been introduced in the so-called organised-eddy simulation (OES) approach. This method introduces an upscale turbulence modelling, acting as an eddy-blocking mechanism able to capture thin shear-layer and turbulent/non-turbulent interfaces around the body. This method highly improves the aerodynamic forces prediction and opens new ensemble-averaged approaches able to model the coherent and random processes at high Reynolds number. Finally, the shock-wave/boundary-layer interaction (SWBLI) is investigated in the case of an oblique shock wave at Mach number 1.7 in order to contribute to the so-called "laminar wing design" studies at European level. The performance of statistical URANS and hybrid RANS-LES models is analysed with comparison, with experimental results, of integral boundary-layer values (displacement and momentum thicknesses) and wall quantities (friction coefficient). The influence of a transitional boundary layer on the SWBLI is featured.
169

Development of a time-resolved quantitative surface-temperature measurement technique and its application in short-duration wind tunnel testing

Risius, Steffen 04 July 2018 (has links)
No description available.
170

Aero-thermal performance of transonic high-pressure turbine blade tips

O'Dowd, Devin Owen January 2010 (has links)
No description available.

Page generated in 0.1095 seconds