• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 42
  • 27
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 163
  • 127
  • 40
  • 38
  • 33
  • 30
  • 28
  • 26
  • 24
  • 23
  • 23
  • 20
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Establishing the Functional Links between Stowaway-like MITEs and Transposases Belonging to the Tc1/Mariner Superfamily in the Yellow Fever Mosquito, Aedes aegypti

Wong, Amy 04 January 2012 (has links)
Miniature Inverted-repeat Transposable Elements (MITEs) are a type of transposable element (TE) that lacks coding capacity. It has been established that in rice that certain Stowaway MITEs are mobilized by transposases from the Tc1/Mariner superfamily of TEs. To retrieve all Tc1/Mariner TEs from the genome, bioinformatic approaches were performed. A total of 295 Tc1/Mariner TEs that encoded a full or partial transposase were recorded which 100 were newly described. Sequence alignment, and identification of the catalytic motif placed these transposases into eight groups. A functional link was established by comparing the terminal sequences of the Stowaway-like MITEs to the termini of the terminal sequences of Tc1/Mariner TEs. A yeast excision assay was used to experimentally test these functional links. Majority of the Stowaway-like MITE and transposase combinations tested did not indicate a functional link. However, a possible functional link was observed between the AATp3-13 transposase and AAStow-5 Stowaway-like MITEs.
22

De l'œuf à l'adulte : étude moléculaire et fonctionnelle de la répression des éléments transposables par les piARN au cours du développement chez drosophila melanogaster / From egg to adult : molecular and functional study of piRNA-mediated repression during germline development in drosophila melanogaster

Marie, Pauline 20 September 2016 (has links)
Chez les métazoaires, la mobilisation des éléments transposables est régulée par de petits ARN non codants appelés piARN pour "PIWI interacting RNA". Cette répression est très étudiée dans la lignée germinale adulte où elle est particulièrement efficace. Néanmoins, la mobilisation de ces éléments doit être régulée tout au long du développement de la lignée germinale, qui transmet l’information génétique à travers les générations. Durant ma thèse, j’ai utilisé le modèle D. melanogaster pour étudier la répression des éléments transposables au cours du développement de la lignée germinale femelle. J’ai ainsi pu montrer qu’une répression fonctionnelle par les piARN existe dès la fin de l’embryogenèse et que les gènes liés à la régulation chez l'adulte sont également nécessaires pour la répression au cours du développement. L’analyse de données de séquençage haut débit m’a permis de mettre en évidence la production de novo de piARN fonctionnels dans les gonades en formation. De plus, comme dans les ovaires adultes, j'ai pu remarquer une répression incomplète, ressemblant à la variégation, à tous les stades du développement. Des expériences de lignage cellulaire suggèrent fortement qu'une mémoire épigénétique précoce est initiée dans les cellules germinales embryonnaires et maintenue jusqu'au stade adulte. L'implication de l'Heterochromatin Protein 1a (HP1a) dans la production des piARN télomériques montrée par séquençage des piARN pourrait expliquer ce phénomène . Les données présentées ici montrent que piARN et leurs partenaires protéiques sont les composants d'un système de répression épigénétique continu tout au long de la vie des cellules germinales. / In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous investigations in Drosophila have enlightened the mechanism of this repression in the adult germline. However, very little is known about piRNA-mediated repression during germline development. Nevertheless, to maintain the integrity of the genome, repression should occur throughout the lifespan of germ cells. During my PhD, I show that piRNA-mediated repression is active in the female germline, from late embryonic to pupal primordial germ cells, and that genes related to the adult piRNA pathway are required for repression during development. rhino-dependent piRNAs, exhibiting the molecular signature of the piRNA pathway "ping-pong" amplification step, are detected in larval gonads, arguing for de novo biogenesis of functional piRNAs during development. I also show that production of telomeric piRNAs depends on Heterochromatin Protein 1a (HP1a). Furthermore, as in adult ovaries, I observe an incomplete, bimodal and stochastic repression resembling variegation at all developmental stages. Clonal analyzes of this incomplete silencing strongly suggest that a cellular memory of an early repression decision is initiated in embryonic germ cells and further maintained until the adult stage. Taken together, the data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.
23

La régulation des éléments transposables par la voie des piARN : Les différences entre lignées germinales mâles et femelles et leurs conséquences sur la dynamique de transposition / Transposable element under piRNA genes regulation in Drosophila : male and female germline differences and their consequences for transposition dynamic

Saint leandre, Bastien 24 February 2016 (has links)
Les Eléments Transposables (ET) sont des parasites du génome caractérisés par leur capacité à se répliquer plus rapidement que les autres éléments génétiques du génome. La régulation par la voie des piARN joue un rôle essentiel pour limiter l’expansion des ET dans les lignées germinales des animaux.La première question posée est comment le génome répond face à une nouvelle invasion par un ET. Dans ce but, nous avons introduit le transposon de Classe II mariner (sous-famille mos1) chez D. melanogaster, qui ne contient naturellement pas l’élément. Nous avons montré, qu’après son amplification autonome dans le génome, l’élément avait atteint un équilibre en termes de nombre de copies, depuis qu’une régulation de novo par les piARN avait été acquise.Deuxièmement, nous avons étudié la mobilisation de l’élément mariner au cours du processus de colonisation des régions géographiques tempérées. A partir d’un large panel de populations naturelles nous avons trouvé que l’activité moyenne de mariner était remarquablement augmentée dans les populations non-Africaines en comparaison aux populations Africaines. Ces variations peuvent s’expliquer par un fort polymorphisme d’expression (transcriptionnel et traductionnel) des gènes de la voie des piARN.Le troisième chapitre soutient que la forte activité des ET dans la lignée germinale mâle est un phénomène global chez les drosophiles. Par ailleurs, le contenu en ET chez les espèces sœurs (D. melanogaster et D. simulans) a fortement divergé et, cela a affecté la réponse associée à la production des piARN. Chez D. melanogaster, de nombreux « burst » de transposition ont eut lieu récemment. Ces familles d’ET sont activement réprimées par les piARN dans l’ovaire et donc, se retrouvent massivement surexprimés dans les testicules. Chez D. simulans, nous pensons que la réponse par les piARN résulte principalement d’une régulation passée qui semble être la relique d’anciennes invasions d’ET.La voie des piARN est supposé être « garante de l’intégrité du génome » de par son rôle actif dans la défense contre les ET. Cependant, si la sélection naturelle purge les génomes de ces parasites délétères, il semble que les mécanismes de régulation de l’hôte contribuent au maintien de l’homéostasie du génome en limitant leur expansion, et quelque part en favoriser le maintien sur long terme. Ainsi, une autre interprétation pourrait être que la voie des piARN est « garante de la diversification du génome » de par son rôle à faciliter l’accumulation des ET. / Transposable Elements (TEs) are genomic parasites characterized by their ability to replicate faster than any other genetic element in the genomes. The piRNA mediated silencing is of central importance to limit TE expansion in the germline of animal species. The present dissertation explores the relationship between TEs and piRNAs alongside their evolutionary dynamics.The first question raised here was to understand how the genome responds to a new TE invasion. For that purpose, we injected a mariner Class II transposon into D. melanogaster genome that does not naturally contain the element. We found that, after its self-replication into the genome, the element have reached a copy number equilibrium since a de novo piRNA mediated regulation have been acquired.Second, we studied the mariner rewiring activity during the colonization of geographical temperate regions. From a large sampling of D. simulans natural populations, we found the mean activity of mariner to be strikingly higher in non-African populations compared to the African ones. These findings support the idea that selection acting on piRNA effector proteins has been of central importance to explain TE lineages diversification during colonization process.The third chapter provides evidences to propose that, the strong TE activity in testes, is a general phenomenon in Drosophila. We also observed that TE landscape divergence between the two sister species, have affected the genomic response mediated by the piRNAs. As a response of their recent bursts of transposition, TEs overexpressed in testes are preferentially silenced by piRNAs in D. melanogaster ovaries. By contrast, we assumed the D. simulans piRNA response to be the relic of a past regulation that still persists mostly against inactive TEs.The piRNA silencing in the germline, is assumed to be the “vanguard of genome” defense and integrity due to its active role against TEs. However, while natural selection purifies the genome from its deleterious parasites, it seems that the host regulation contributes to genome homeostasis by limiting their expansion, and somehow, favors their longterm maintenance. Thus, another interpretation would have been that piRNA silencing is the “vanguard of genome” diversification due to its active role in facilitating TE accumulation
24

RiTE database: a resource database for genus-wide rice genomics and evolutionary biology

Copetti, Dario, Zhang, Jianwei, El Baidouri, Moaine, Gao, Dongying, Wang, Jun, Barghini, Elena, Cossu, Rosa M., Angelova, Angelina, Maldonado L., Carlos E., Roffler, Stefan, Ohyanagi, Hajime, Wicker, Thomas, Fan, Chuanzhu, Zuccolo, Andrea, Chen, Mingsheng, Costa de Oliveira, Antonio, Han, Bin, Henry, Robert, Hsing, Yue-ie, Kurata, Nori, Wang, Wen, Jackson, Scott A., Panaud, Olivier, Wing, Rod A. January 2015 (has links)
BACKGROUND: Comparative evolutionary analysis of whole genomes requires not only accurate annotation of gene space, but also proper annotation of the repetitive fraction which is often the largest component of most if not all genomes larger than 50 kb in size. RESULTS: Here we present the Rice TE database (RiTE-db) - a genus-wide collection of transposable elements and repeated sequences across 11 diploid species of the genus Oryza and the closely-related out-group Leersia perrieri. The database consists of more than 170,000 entries divided into three main types: (i) a classified and curated set of publicly-available repeated sequences, (ii) a set of consensus assemblies of highly-repetitive sequences obtained from genome sequencing surveys of 12 species; and (iii) a set of full-length TEs, identified and extracted from 12 whole genome assemblies. CONCLUSIONS: This is the first report of a repeat dataset that spans the majority of repeat variability within an entire genus, and one that includes complete elements as well as unassembled repeats. The database allows sequence browsing, downloading, and similarity searches. Because of the strategy adopted, the RiTE-db opens a new path to unprecedented direct comparative studies that span the entire nuclear repeat content of 15 million years of Oryza diversity.
25

The Role of Retrotransposons in Gene Family Expansions in the Human and Mouse Genomes

Janoušek, Václav, Laukaitis, Christina M., Yanchukov, Alexey, Karn, Robert C. 09 1900 (has links)
Retrotransposons comprise a large portion of mammalian genomes. They contribute to structural changes and more importantly to gene regulation. The expansion and diversification of gene families have been implicated as sources of evolutionary novelties. Given the roles retrotransposons play in genomes, their contribution to the evolution of gene families warrants further exploration. In this study, we found a significant association between two major retrotransposon classes, LINEs and LTRs, and lineage-specific gene family expansions in both the human and mouse genomes. The distribution and diversity differ between LINEs and LTRs, suggesting that each has a distinct involvement in gene family expansion. LTRs are associated with open chromatin sites surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs may play a structural role promoting gene duplication. Our findings also suggest that gene family expansions, especially in the mouse genome, undergo two phases. The first phase is characterized by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The second phase is characterized by rapid gene family expansion due to continuous accumulation of LINEs and it appears that, in some instances at least, this could become a runaway process. We provide an example in which this has happened and we present a simulation supporting the possibility of the runaway process. Altogether we provide evidence of the contribution of retrotransposons to the expansion and evolution of gene families. Our findings emphasize the putative importance of these elements in diversification and adaptation in the human and mouse lineages.
26

O sistema Mutator em cana-de-açúcar: uma análise comparativa com arroz / The Mutador system in sugarcane: a comparative analysis with rice

Saccaro Junior, Nilo Luiz 27 November 2007 (has links)
Os elementos transponíveis (TEs) constituem grande parte do material genético de diversos eucariotos, alcançando entre 50-80% do genoma de gramíneas. Os projetos genoma proporcionaram um aumento das informações disponíveis sobre estes elementos, o que evidenciou sua importância e possibilitou o desenvolvimento de novas abordagens para seu estudo. O sistema Mutator (Mu) de milho é o mais ativo e mutagênico transposon de plantas. Além do elemento autônomo, MuDR, o sistema compreende ainda um conjunto de elementos bastante heterogêneo em sua seqüência e estrutura, chamados MuLEs, que podem conter até mesmo fragmentos de genes do hospedeiro. As seqüências de transposons mais abundantemente expressas no transcriptoma de cana-de-açúcar são relacionadas a MuDR e se agrupam em quatro clados (nomeados Classes I, II, II e IV), existentes antes da divergência entre Mono e Eudicotiledôneas. O trabalho apresentado aqui teve o objetivo de aprofundar o conhecimento sobre o sistema Mutator em cana-de-açúcar a partir da análise comparativa entre seqüências dessa planta e de arroz (cujo genoma está totalmente seqüenciado). Foi possível avaliar a abundância e diversidade do sistema Mu em gramíneas, ficando evidente uma amplificação de elementos clado-específica, tendo a Classe II sofrido uma explosão no número de cópias ao longo da evolução destas plantas. Análises estruturais revelaram que, enquanto as Classes I e II compreendem elementos com características de transposons, as Classes III e IV são, na verdade, transposases domesticadas. Foram completamente seqüenciados dois clones de BAC de cana-de-açúcar, um proveniente de cada parental do híbrido (Saccharum officinarum e Saccharum spontaneum), ambos contendo elementos da Classe III. Estes elementos foram caracterizados e a seqüência genômica de cana foi comparada com sua ortóloga em arroz, revelando um acúmulo de TEs nas regiões intergênicas. / Transposable elements (TEs) constitute great part of eukaryote genetic material, in grasses, they comprise between 50-80% of the genome. Genome projects have significantly increased the amount of information about these elements, revealing their importance and allowing the development of new approaches for their study. The Mutator system (Mu) of maize is the most active and mutagenic plant transposon. Beyond the autonomous element, MuDR, the system comprises a very heterogeneous, in sequence and structure, set of elements, called MuLEs, that can contain even host gene fragments. The most abundant transposon related sequences expressed in sugarcane transcriptoma are the MuDR-like. They group into four clades (called Classes I, II, III and IV) that exist prior to the Mono and Eudicot split. The aim of this work is to gain knowledge about the Mutator system in sugarcane through the comparative analysis against rice (whose genome is completely sequenced). The results described the abundance and diversity of the Mu system in grasses, evidencing a clado-specific amplification with a burst of Class II along the evolution of this plant group. Structural analyses showed that, while Classes I and II comprise elements with transposon characteristics, Classes III and IV are domesticated transposases. One BAC clone from each sugarcane parental genotype (Saccharum officinarum and Saccharum spontaneum) have been completely sequenced, both containing Class III elements. These elements have been characterized and the sugarcane genomic sequences were compared with their orthologues in rice. The comparative analyses showed an accumulation of TEs in the intergenic regions.
27

The evolution of gene expression in primates

Tashakkori Ghanbarian, Avazeh January 2015 (has links)
The evolution of a gene’s expression profile is commonly assumed to be independent of its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between expression of neighboring genes in extant taxa. Indeed, in all eukaryotic genomes, genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this, I consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. I find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, chromatin level mechanisms are likely regulators of this phenomenon. Firstly established in Primates and then expanded to compacted genome of yeasts, the phenomenon of correlation in change in gene expression of the neighbouring genes I describe as “expression piggy-backing”, an analog of hitchhiking. Extending the same principle to non-coding genes I find a possible role of lincRNAs in regulating expression of their neighbours, mediated by a coupling between splicing and chromatin modification. Finally I employ insertions of human endogenous retroviruses (HERVs), as a naturally occurring transgene experiment, to find out how randomly scattered sequences would affect the expression profile of their neighboring genes. I show these retroviruses to be the focus of transcription in human ES cells and define a transcription factor, LBP9, as a novel pluripotency-associated agent. Transcription results in neighbourhood modification including the generation of chimaeric transcripts. Predictions were confirmed experimentally by collaborators.
28

Comparative genomics of noncoding DNA

Manee, Manee January 2016 (has links)
High levels of primary sequence conservation are observed in many noncoding regions of eukaryotic genomes. These conserved noncoding elements (CNEs) have shown to be robust indicators of functionally constrained elements. Nevertheless, the function of only a small fraction of such CNEs is known and their role in genome biology remains largely a mystery. Comparative genomics analysis in model organisms can shed light on CNE function and evolution of noncoding DNA in general. Recently, it has been reported that short CNEs in the Drosophila genome are typically very AT-rich but have unusually high levels of GC content in a much larger (~500 bp) window around them. To understand whether these "side effects" are dependent on their CNE definition or are a more general feature of the Drosophila genome, we analysed base composition of CNEs from two different CNE detection methods. We found side effects are real, but are restricted to a subset of CNEs in the genome. An alternative hypothesis to explain the existence of CNEs is the mutational cold spot hypothesis. Previous work using SNPs was shown evidence that CNEs are not mutational cold spots. Here, non-reference transposable elements (TEs) were used to test cold spot hypothesis. A significant reduction in levels of non-reference TEs was found in intronic and intergenic CNEs compared to the expected number of insertions. TEs in intergenic CNEs were also found at lower allele frequencies than TEs in intergenic spacers. Furthermore, we used simulation to explore the effects of insertion/deletion (indel) evolution on noncoding DNA sequences with and without constrained noncoding elements. We assessed several indel-capable simulators to test expected outcomes with no selectively constrained elements. Simulations with constrained elements show that sequences grow in length even when the deletion rate is exactly the same as the insertion rate. This result can be interpreted as being due to purifying selection on CNEs acting to remove an excess of deletion over insertions. Together, the results presented here provide insights into the evolution of noncoding DNA in one of the most important model organisms.
29

Cut-and-paste transposable elements in the arbuscular mycorrhizal fungi Claroideoglomus claroideum

Xu, Wenbo January 2019 (has links)
Arbuscular mycorrhizal (AM) fungi are important symbionts to most of the terrestrial plants. Recent genome sequencing projects revealed that many AM fungi have repetitive genetic elements in their genomes and among these repetitive genetic elements, cut-and-paste DNA transposable elements were very prevalent. For example, in Rhizophagus irregularis, up to 21% of the genome assembly content was associated with cut-and-paste DNA transposable elements. In Diversispora epigaea, up to 23% of the genome content can also be attributed to cut-and-paste DNA transposable elements. While cut-and-paste DNA transposable elements are very abundant in AM fungi, detailed studies on these repetitive elements have been lacking. In this study, we revealed the diversity of cut-and-paste DNA transposable elements in Claroideoglomus claroideum and identified many potentially autonomous transposable elements in the genome assembly of C. claroideum. The evolutionary relationship between the DNA transposons we identified and the established sequences in public databases were also investigated.
30

Mechanisms Of MicroRNA evolution, regulation and function: computational insight, biological evaluation and practical application

Spengler, Ryan Michael 01 May 2013 (has links)
MicroRNAs (miRNAs) are an abundant and diverse class of small, non-protein coding RNAs that guide the post-transcriptional repression of messenger RNA (mRNA) targets in a sequence-specific manner. Hundreds, if not thousands of distinct miRNA sequences have been described, each of which has the potential to regulate a large number of mRNAs. Over the last decade, miRNAs have been ascribed roles in nearly all biological processes in which they have been tested. More recently, interest has grown in understanding how individual miRNAs evolved, and how they are regulated. In this work, we demonstrate that Transposable Elements are a source for novel miRNA genes and miRNA target sites. We find that primate-specific miRNA binding sites were gained through the transposition of Alu elements. We also find that remnants of Mammalian Interspersed Repeat transposition, which occurred early in mammalian evolution, provide highly conserved functional miRNA binding sites in the human genome. We also provide data to support that long non-coding RNAs (lncRNAs) can provide a novel miRNA binding substrate which, rather than inhibiting the miRNA target, inhibits the miRNA. As such, lncRNAs are proposed to function as endogenous miRNA "sponges," competing for miRNA binding and reducing miRNA-mediated repression of protein-coding mRNA targets. We also explored how dynamic changes to miRNA binding sites can occur by A-to-I editing of the 3 `UTRs of mRNA targets. These works, together with knowledge gained from the regulatory activity of endogenous and exogenously added miRNAs, provided a platform for algorithm development that can be used in the rational design of artificial RNAi triggers with improved target specificity. The cumulative results from our studies identify and in some cases clarify important mechanisms for the emergence of miRNAs and miRNA binding sites on large (over eons) and small (developmental) time scales, and help in translating these gene silencing processes into practical application.

Page generated in 0.0657 seconds